
Rain Scene Animation Through Particle Systems
and Surface Flow Simulation by SPH

Bruno Barcellos Coutinho Antonio A. F. Oliveira
Yalmar Ponce Atencio

Computer Graphics Laboratory - COPPE - UFRJ
Rio de Janeiro, Brazil

(barcellos, oliveira, yalmar)@cos.ufrj.br

Gilson Antonio Giraldi
National Laboratory for Scientific Computing

Rio de Janeiro, Brazil
gilson@lncc.br

Abstract—Realistic rain scenes animation is a complex task
due to both the rendering and fluid dynamics simulation issues.
The associated phenomena, like rain strokes rendering, splashing
of raindrops and the simulation of the generated surface flow
are known difficulties in this area. This paper describes a com-
putational framework to incorporate these elements in a scene
containing a digital terrain model (DTM). In the rain model, the
raindrops are modeled by a particle system implemented in GPU.
Each particle represents a drop and the Precomputed Radiance
Transfer (PRT), expressed in a spherical harmonics bases, is used
to incorporate environment lightning to the rendering engine. The
Smoothed Particle Hydrodynamics (SPH) method is employed
for simulating the superficial flow over the terrain and lake
formations. The rendering of the fluid free surface is performed
by applying an environment mapping technique plus Fresnel
effects to a regular geometric representation known as “carpet”.
The experimental results show the potential of the proposed
pipeline for computer graphics and highlight the fact that it
is a promising framework for real time applications.

Index Terms—rain animation; SPH; particle system; PRT;
terrain model;

I. INTRODUCTION

Physically-based techniques for the animation of natural
elements like fluids (gas or liquids), elastic, plastic and melting
objects, among others, have taken the attention of the computer
graphics community in the last decades [1], [2]. In particular,
a fair amount of work has been done on realistic animation of
rain and associated phenomena [3]. The motivation for such
interest rely in the potential applications of these methods in
film post-production, games, simulators and virtual reality [4].

Raining effects have been rendered in four ways: using
image-based, textures-based, particle system or hybrid ap-
proaches [3]. In image-based methods the rain is extracted
from a video and then applied to different background. The
key idea of these approaches is to get, from the source video,
the complex brightness patterns observed in rain streaks and
then to apply these patterns to the target one. These patterns
are produced by elements like lighting, viewpoint effects,
reflection and refraction which are hard to properly control in
a simulation. In this area we shall mention the methods that
add or remove rain patterns from videos [5]–[7] and the image-
based method presented in [4] which includes the development
and utilization of a streak database.

The texture-based techniques use a texture which is con-
tinuously scrolled following the direction of the falling rain
[8]. The animation of rain with virtual particles applies the
combination of a particle system with a physically-based
motion model of the rain and light interaction techniques [6],
[9], [10]. Methods in this category includes collision detection
methods for raindrops [9], GPU implementations for rendering
rain streaks [11], depth of field (DOF) effects to take into
account the distance from the viewer [9], as well as level-of-
details (LOD) approaches [12]. The last category is composed
by hybrid approaches combining particle systems and scrolling
textures [10], image-based methods to transfers details from
video of real rain to virtual particles and rendering techniques
[6].

In this paper we propose an hybrid framework for realistic
rain scenes animation which is composed by a particle-based
rainfall model, surface flow simulation based on Smoothed
Particle Hydrodynamics (SPH), and a method (carpet) for
extracting the fluid free surface. The Precomputed Radiance
Transfer (PRT) is used to incorporate environment lightning to
the rain strokes rendering. The rendering of the free surface of
the fluid is performed through environment mapping technique
plus Fresnel effects.

Our framework is inspired in the hybrid technique described
in [6] which final goal is to add a rainfall in a target video
sequence. However, unlikely that reference, our aim is to
render a whole virtual scene. Besides, the reference [6] did
not simulate surface flows.

The PRT is a global illumination method used as an
alternative to the expensive ray tracing based techniques [13].
Basically, the incoming light, as well as the transfer function
of objects, are expressed in a spherical harmonics base. That
means, the light integration is reduced to a simple dot product
between the vector of light coefficients and the vector of the
transfer function coefficients. Through PRT, we can compute
the appearance of the rain, based on the environment map, in
real-time [14].

The SPH is a mesh free, lagrangian, method used for the
numerical simulation of mechanical systems [15]. Mesh free
methods have been a hot topic of research in the computer
graphics community mainly due to their efficiency and sim-

plicity to deal with boundary changes [16], [17]. A common
characteristic of SPH models is the need of a method to
simulate and extract the free surface of the fluid [18]. In this
paper, the simulation is addressed by the method proposed in
[18]. The free surface extraction is implemented by building
a representation of the surface based on a regular structure
(carpet) following [19].

The main contribution of this work is the development of
a particle based framework to simulate a rainfall scene as
well as associated effects, like the superficial flow and lake
formation. The paper is organized as follows. Section II gives
background for paper understanding. The proposed integrated
model is presented in section III. The experimental results are
shown on section IV. Finally, we present the conclusions and
future works on Section V.

II. BACKGROUND

The proposed methodology relies on the Navier-Stokes
equations plus SPH for fluid simulation, a regular represen-
tation for the free surface and a particle-based framework for
realistic rain scenes animation. In this section we review these
approaches.

A. Navier-Stokes for Fluid Animation

The majority fluid models in computer graphics follow the
Eulerian formulation of fluid mechanics that is based on a
top down viewpoint of the nature: the fluid is considered as
a continuous system subjected to Newton’s and conservation
Laws as well as state equations connecting the macroscopic
variables of pressure P , density ρ, and velocity ~v. In this
theory, the mass conservation, also called continuity equation,
is given by [20]:

∂ρ

∂t
+∇ · (ρ~v) = 0 (1)

The linear momentum conservation equation, also called
Navier-Stokes, can be obtained by applying the third Newton’s
Law to a volume element dV of fluid. For incompressible
flows (∇·~v = 0) it can be written as [20]:

ρ
d~v

dt
= −∇P + F + µ∇2~v, (2)

where F is an external force field and µ is the viscosity of
the fluid. Also, we may need an additional equation for the
pressure field. This is a state equation which ties together all
of the conservation equations for continuum fluid dynamics
and must be chosen to model the appropriate fluid (i.e.
compressible or incompressible). In the case of liquids, the
pressure P is temperature insensitive and can be approximated
by P = P (ρ). In [18], it is applied the expression: P = c2ρ,
where c is the speed of sound in this fluid. Equation (2)
needs initial conditions ~u (t = 0, x, y, z) as well as boundary
conditions, like the usual no-slip one: ~u|S = 0.

B. Smooth Particle Hydrodynamics

The two fundamental elements in the Smoothed Particle
Hydrodynamics (SPH) method are an interpolation kernel
W and a particle system that represents a discrete version
(sample) of the fluid [15]. The kernel estimation of a scalar
quantity A(r) is given by:

〈A(r)〉 =
∫
Space

A(r′)W (r− r′, h) dr′, (3)

where the function W (r − r′, h) is an interpolation kernel
which must satisfies properties like Volume conservation and
Dirac delta function limit [15]. So, if we take a sampling of A
then the A(r′) in equation (3) will be known only at a discrete
set of N points r1, r2, ..., rN . Hence, through the mentioned
properties it is possible to show that the scalar field A and its
gradient 〈∇rA(r)〉 can be estimated by [15]:

〈A(r)〉 =
N∑
j=1

mj

ρ(rj)
A(rj)W (r− rj , h). (4)

〈∇rA(r)〉 =
N∑
j=1

mj

ρ(rj)
A(rj) ∇rW (r− rj , h). (5)

where the smoothing length h is the width of the kernel and
defines the distance at which a particle interacts with other
particles. An analogous expression can be obtained by the
Laplacian. In this work, the smoothing kernels are usual ones
applied in the literature and described in [18].

From equation (5) we can observe that there is no need for
a mesh to compute spatial derivatives. With equations (4) and
(5), we can rewrite the terms of the Navier-Stokes equation
(2), using this approach, as (see [15] for details):

~fpressi = −
∑
j

mj
pi + pj

2ρj
~∇W (ri − rj , h) (6)

~fvisci = µ
∑
j

mj
~vj − ~vi
ρj

~∇2W (ri − rj , h) (7)

~fgravj = ρj ~gj (8)

where the ~fpressi and ~fvisci are the pressure and viscosity
forces. Only the gravity force ~fgravi is considered as external
force. The density at each particle can be found from the
following equation:

ρi =
N∑
j=1

ρjmjW (ri − rj , h). (9)

Besides the dynamic forces in expression (6)-(8) we also
need a surface tension to be applied in the particles nearby
the free surface. Such particles undergo a density gradient,
which is an artifact of the SPH framework, pictured on Figure
1.

In [18] this problem is addressed through an additional field,
called the color field cS , which is unity in SPH particles and

Fig. 1. Density gradient nearby the free surface.

zero otherwise, whose smoothed version 〈cS (x)〉 is computed
by expression (4). The free surface tension is given by:

tslivre = −σκ ~n

||~n||
, (10)

where σ is a scale factor and ~n, κ are the surface normal and
curvature, at the free surface particles. They are computed,
respectively, by:

~n = ~∇〈cS (x)〉 ; κ = −∆ 〈cS (x)〉
||~n||

. (11)

In the SPH approach, the numerical scheme for fluid simu-
lation is obtained by substituting expressions (6)-(8) into the
Navier-Stokes equation, which gives the expression:

d~vi
dt

=
Qti
ρi
, (12)

where Qti = ~fpressi + ~fvisci + ~fgravj .
The Equation (12) computes the particles acceleration. So,

the Leapfrog technique [15] allows to update the particles
positions as follows:

~vt+δti = ~vti +
δt

2
Qti, (13)

rt+δti = rti + (δt) · ~vt+δti , (14)

where δt is a time step.

C. Free Surface Computation

In this paper we apply the carpet structure, described in [19]
for free surface representation. The carpet consists of two data
structures: a n×n (virtual) grid and a quadtree. The key idea
is to store SPH particles in the quadtree and to traverse this
structure to efficiently extract the free surface geometry which
will be stored in the grid nodes. Each node (x, y, z) of the grid
stores in the z coordinate the local height of the free surface.
At the initialization, the grid is flat and located below any
terrain height value. Then, a full quadtree is instantiated on
the grid quads with each node storing the absolute minimum
terrain height in this domain, the current absolute grid height
and a velocity value. Then, the SPH particles are inserted
into the tree leaves by storing their absolute height in the
corresponding spatial bin. The carpet is pushed to the highest

level particles high. Next, the inner nodes of the quadtree are
updated by propagating the height values from bottom to top.

We can now render the free surface efficiently by traversing
the quadtree. The recursion is aborted and nothing is done if
a height value below the height of the terrain is found. If we
reach a leaf node, we can be sure that it must be rendered.
Afterwards, the carpet velocity is accelerated by gravity in
order to smoothly update carpet position. At the end of this
process, only the visible parts of the free surface are stored in
the grid nodes. In this paper, the rendering of the free surface
is performed through traditional environment mapping plus
Fresnel effects [21].

D. Real-Time Rain Animation with PRT

Following [6], we also use a particle system for the ren-
dering of rain. Using such a system realistic rain simulations
controlled by some few parameters can be produced. Figure 1
shows an outline of the whole process till the final rendering
is obtained.

Fig. 2. Rendering rain pipeline (Reprinted from [6]).

Each rain drop is represented by a particle consisting of
a spherical model. Besides simple features, like velocity and
refraction index, it has an associated oppacity map refereed
here as the drop alpha matte (see Figure 2), left-middle. The
alpha matte is defined on a rectangular strip whose width is
related to the sphere diameter and the length to the product
of the particle velocity by the exposure time of the simulation
virtual camera (Figure 2, left-bottom).

To obtain the image of a drop, we start by making the alpha
matte and particle centers coincident. Then, the alpha matte is
oriented so that two sides become parallel to the velocity and
the other two orthogonal to the viewing direction. Positioned
in that way, it is, then, projected onto the image plane. See
Figure 2, top middle. Every pixel on that projection (the
alpha-mask) will take part in the “drop image”. To compute
the color/brightness attributes of those pixels two components
are considered. One comes from an environment-map (E-M)

while the other from the background image. That environment
map can be generated based on an image or video of a real
scene like in [6] and serves for different purposes but, in the
case, mainly to make the environment lightness influence the
results. The E-M component is modified, due to the light-
drop interaction in the following way. Each one of the alpha-
mask pixels defines a viewing direction (VD) - that of its
projecting ray. The spherical form of the drop model allows
that the radiance transfer function (RTF) for any outgoing
direction has a closed form expression. We remark that this
makes its evaluation much faster since there is no need of
tracing the light inside the drop. In spite of that, evaluating
the flux of light leaving the drop in a certain direction,
considering the contributions of all incoming directions can be
computationally heavy for real time applications. To address
this problem, both the E-M and the RTF for VD are replaced
by compact Spherical Harmonics (SH) based representations
of them - we have used only the 16 lowest frequency SH
functions. The scalar product of these representations gives the
E-M contribution to the pixel value(s). We observe that these
representations are both obtained in a pre-processing phase
constituting the so called Pre-Computed Radiance Transfer
(PRT) engine which makes it possible, through a GPU based
computation process, to obtain the E-M contribution to the
drop image in real-time (Figure 2, middle-bottom).

In a last step the background contribution is blended with
the E-M one to produce the final rain drop image. Blending
weights of each component are obtained from the projected
alpha-matte (see alpha blending block in Figure 2).

We follow Wang et al.’s approach [6] to obtain a closed
form for a spherical drop RTF. Here, however, we treat the
problem in a discretized context and indicate a more robust
computation process.The discretization approach used resumes
to subdividing the range [0, π] into intervals (Jm) of length ∆
and take the middle points of them (αm).

The reversibility of light implies that the RTF for VD must
be identical to the distribution function of the outgoing light
intensity if the incoming direction is VD. So, let us focus
on that last function. Now, let Iin be the intensity of the
incident light and Ln and In be, respectively, the direction
and intensity of the outgoing light after being either reflected
without entering the drop (n = 1) or reflected inside the
raindrop (n− 2) times (n ≥ 2).

Incident rays parallel to VD can hit the raindrop at different
positions, resulting in different incident angles γ. On the other
hand, as the whole light path inside the drop must lie in
the same plane containing its center, the azimuth angle φ
is always the same. So, to express the outgoing direction
Ln, we must only be concerned on obtaining the polar
angle θn. Then, consider the triangle wave TWn : x →
|2. arcsin(sin(x+mod(n,2).π

2))|. Since the drop is spherical, it
can be proved that: θn = Θn(γ) , TWn(2((n − 1)β − γ)),
where β, is the angle between the refracted light and the
surface normal at the entrance point.

Let R be the reflectance of the drop and T = 1 − R,
its transmittance. If n = 1, we have a straightforward for-

mulation: I1(θ)
Iin

= 0.25R(θ2). For n ≥ 2, define µ(γ) =
T (γ)2R(γ)n−2 sin(γ) cos(γ). For a small ∆, a very reason-
able approximation of In(αm)

Iin
is given by:

ζnm ,

∑
k µ(αk).|(Jk ∩Θ−1

n (Jm))|
∆ sin(αm)

(15)

where |J | is the length of the 1D set J . In consequence,

RTF (αm, φ) =
Iout(αm)
Iin

=
∞∑
n=1

In(αm)
Iin

∼=
nmax∑
n=1

ζnm (16)

According to [6] with nmax = 9, the percentual error
resulting of cutting off the contributions from the terms with
a higher n is reduced to 0.2%. During the simulation process
we obtain RTF (θ, φ) by simply interpolating the values pre-
computed for the two αm closest to θ.

When applying PRT, both the discretized outgoing light
intensity distribution and the environment map are projected
onto a set of Spherical Harmonics subspace. The SH functions
define an orthonormal basis for the set of scalar functions
defined on the unitary sphere S. They are defined by:

yml (θ, φ) =
√

2Km
l cos (mϕ)Pml (cos θ) ,m > 0, (17)

yml (θ, φ) =
√

2Km
l sin (−mϕ)P−ml (cos θ) ,m < 0, (18)
y0
l (θ, φ) = K0

l P
0
l (cos θ) ,m = 0. (19)

where Pml are the associated Legendre polynomials and Km
l

is a normalization coefficient.
Because the SH basis is orthonormal, the coordinate (fml)

of a scalar function f in relation to the harmonic yml is given
by the integral over S of the product f.yml .

With these coordinates, we can compute the nth order
reconstruction function to approximate f :

f̃ (θ, ϕ) =
n−1∑
l=0

l∑
m=−l

fml y
m
l (θ, ϕ) . (20)

For Computer Graphics purposes it is well accepted that
making n = 4, which means having 16 SH coefficients, is
a good solution for the trade-off between computational cost
and accuracy. Thus the vectors in our PRT engine have that
dimension.

III. THE PROPOSED INTEGRATED FRAMEWORK

As it has already been indicated, the main purpose of this
work is to integrate in a single framework the following
elements: (a) A particle-based rainfall model implemented in
CUDA; (b) a SPH based surface flow simulation model; and
(c) A method (carpet) for extracting the fluid free surface. This
integrated scheme is applied to a wholly synthesized scene
containing a digital terrain model (DTM) represented by a
regular mesh that keeps the height for each point.

The rain simulation method takes alpha mattes from a
database which is generated from rain videos through the
technique described in [4]. Then, the raindrops are modeled
by a particle system implemented in GPU. Each particle
represents a drop and it is rendered using the alpha matte

and the Precomputed Radiance Transfer (PRT) to incorporate
environment lightning, following the technique described in
section II-D. The surface flow simulation follows the Navier-
Stokes equation (2), and its discretization is given by expres-
sions (12)-(14). It is important to emphasize that our SPH
model has non-traditional elements (particles generation due
to precipitation and evolution on a curved surface) that requires
specific considerations for a GPU implementation. That is way
we decided for a CPU implementation of the surface flow in
this work.

The carpet structure (section II-C) stores the free surface
geometry and its physical integrity is kept by the surface
tension computed by expression (10).

After setting the initial conditions, the process of simulation
starts. Figure 3 shows the interaction between the models at
each time step.

Fig. 3. Overview of the proposed framework.

Basically, the rainfall has to evolve until it reaches the fluid
free surface (or the DTM surface), and then the rain particles
die and feed the SPH model. The collisions between the rain
particles and the fluid surface (carpet) are computed in GPU.
For this computation, at each time step the CPU has to send
to GPU a matrix with the heights of the fluid free surface.

With this data, the system can check all the new positions
of each rain particle: if the rain particle has reached the
free surface or the DTM it dies and updates a precipitation
matrix for water flow simulation. That precipitation matrix is a
particle counter field counter(i, j, t), which mimics the water
held over the DTM. For a high resolution carpet with height
field ϕ(i, j, t) we can perform the collision detection test for
a rain particle at position (x, y, z, t) simply by verifying if
z < ϕ (bxc , byc , t). If yes, the precipitation matrix is updated
as:

counter (bxc , byc , t) = counter (bxc , byc , t) + 1. (21)

After the computation of the collisions and update of
counter(i, j, t), the GPU has to send back to the flow simula-
tion model, in CPU, a matrix with the precipitation informa-
tion. With this data, the method inserts SPH particles in the
correspondent collision position, according to the expression:

Nnew(i, j, t) =
⌊
counter(i, j, t)

K

⌋
, (22)

where Nnew(i, j, t) is the number of new SPH particles
inserted at time t, in the terrain point (i, j, z(i, j)), and K
is a precipitation scale factor.

Then, following the dataflow of Figure 3, the SPH sim-
ulation starts. SPH particles positions are updated through
expressions (12)-(14). If a particle is closer the DTM surface,
it may happen that the new position obtained by expression
(14) is bellow the DTM surface. In this case, we correct the
particle position through a reflection respect to the local DTM
tangent plane. Besides, we reflect also the particle velocity and
re-scale its intensity using a damping coefficient.

Then, the new carpet height field is computed with the
maximum SPH height in each carpet cell. The precipitation
matrix is also used to render the splashes of the drops in the
fluid surface. This process is based on the work [22], where the
splash evolution is represented with a sequence of six textures
pictured on Figure 4.

Fig. 4. Pictures sequence for drop splashes rendering.

These textures are rendered with the point sprite technique
and rotated according to the angle between z-axis and the
free surface normal at the collision point. In order to apply
different series of textures for different kind of sprays, sprays
of raindrop are classified into three categories, following the
different range of angle between the z-axis and the collision
point normal.

Rain particles born at the top of the rainfall area. Their
velocities are randomly set and the equation of motion is
simply the uniform one:

rt+∆t
i = rti + (∆t) · ~vi, . (23)

For the vertical direction we add the gravity term (−4.9t2).
If a rain particle dies at time t then a new rain particle enters
the system at the next simulation time in the same position
where the died particle had born. In the actual implementation,
we subdivide the top of the rainfall area into a egular mesh
and use the grid nodes as birth sites for rain particles. The
GPU is the host for all these rain particles processing.

In Figure 3 it is supposed that the time scale of the rain
and SPH simulation are equal. However, we can change this
scheme; for instance, we can update the SPH system only
after a number m > 1 of rain simulation steps. Such choice
improves performance and it may not reduce the quality of
surface flow visualization.

IV. RESULTS

In this section we describe some experiments with the
proposed framework. We show the behavior of the fluid in
different digital terrain models and highlight aspects that can
be useful for computer graphics applications. The framework

was developed in C/C ++ language, and the rain animation in
CUDA. The visualization was implemented in OpenGL and
the shaders in OpenGL Shading Language. The experiments
were performed in a Intel Quad Core 3.0 GHz, with 4 GB of
RAM and a Video Card NVidia GeForce 9800 GTX, running
in a OpenSuse Linux platform. The pictures included in this
paper are snapshots obtained from the framework.

A. Rendering Results

In the presented experiments, the carpet resolution is always
2048×2048, and the DTMs are represented by digital elevation
models, with resolution 512×512. The update of SPH particles
and the rain drops positions follow expressions (13)-(14) and
(23) and respectively, with δt = 0.15 and ∆t = 0.025.

1) Rain Rendering: The Figure 5.(a) shows the rain ren-
dering results obtained using the method described on
section II-D. We can observe realistic effects due to
the environment lightning and rendering engine on the
synthetic rain. This example shows the effect of chang-
ing the environment map color. Even though the same
rainfall setup and scene parameters are used in both the
pictures, the final rain appearance looks significantly
different due to the change of the environment map
color.

(a)

(b)

Fig. 5. Changing environment map color from red to green.

2) Precipitation Scale: The lake formation can be observed
in Figure 6.(a) that shows a concave region in the DTM
and the water accumulation along time evolution. In

this figure, we can see the enlargement of the flooded
area with the downhill path over the terrain surface and
affected regions. We explore this example to study the
effect of the precipitation scale parameter K in expres-
sion (22). The Figure 6.(a) shows the flow configuration
in the step 2880 of the simulation when the precipitation
scale factor is K = 2, while the Figure 6.(b) illustrate
the same simulation step, but with precipitation scale
K = 4. As expected, we get a lower rate of water
accumulation in Figure 6.(b).

(a)

(b)

Fig. 6. Concave region in the DTM with surface flow. (a) Water accumulation
after 2880 steps of rain simulation with K = 2 in expression (22). (b)
Configuration at time 2880 but with K = 4 in expression (22).

Despite of this, we observe similarities between the
surface flow patterns in Figures 6.(a) and 6.(b), which
indicate that we can change the precipitation scale pa-
rameter to slow down the surface flow animation but still
reproducing physically plausible effects. This example
also indicates that such simulation can be useful not
only for computer graphics applications, but also for
water resources studies and flood evolution analysis. So,
high consequence areas that could be impacted can be
identified.

3) Carpet: The example of Figure 7 demonstrates the
capability of the carpet, inside our framework, for the
simulation of river and lake formations over a complex
topography. In this figure, we placed the rain source in
a large valley of the DTM. The Figure 7.(a) shows the

SPH particles while the 7.(b) pictures only the carpet of
the simulation at the same time step. The visual effects
of Fresnel law of refraction/reflection and environment
mapping are presented in the carpet rendering. The
flow reaches all the way down going towards concave
regions in the terrain. Although there are DTM regions
with sparse particle distribution (left-hand corner of the
bottom of Figure 7) we observe that the carpet faithfully
fills the topography.

(a)

(b)

Fig. 7. (a) Surface flow visualization using only SPH particles. (b) Visualizing
surface flow using carpet without SPH particles.

4) Free Surface Tension: Now, we demonstrate the effect
of the free surface tension, defined by expression (10).
The Figures 8.(a)-(b) were generated with the same
parameters and conditions but the first one did not apply
the superficial tension. We can observe some instabilities
in the free surface of Figure 8.(a) due to the density
gradient nearby the free surface. In fact, particles tend
to scape from the fluid which generates the patterns
observed in some regions of the fluid. Things are clearly
different in Figure 8.(b) where the free surface (carpet)
is much more smooth and realistic.

5) Splash Animation: Figure 9 shows the splashing of
raindrops, in a augmented scale, on the fluid free surface
(carpet). A liquid drop hitting a surface often flattens

(a)

(b)

Fig. 8. (a) Simulation without considering free surface tension. (b) Free
surface flow with surface tension.

into a thin sheet that then bounces to form a crown
shape [23]. The texture sequence in Figure 4 pictures
this phenomenon. In the Figure 9 we shall observe the
effects obtained with point sprite rendering to combine
the splash patterns with the local surface flow color (light
blue spots). However, in our case, the local orientation
of the carpet must be considered, following the method
described in section III, that is, according to the range
of the angle between the z-axis and the collision normal.
That is way we observe different sprays of raindrop
depending on the terrain slope.

B. Computational Efficiency

To perform frame-rate tests to measure the FPS of the
framework we must take into account the computational cost
of animations involving Rain (R), Collision Detection (CD),
SPH, Carpet (C) and visual effects like Splashes (S). We vary
the K value in expression (22) and measure the FPS for three
kind of simulations: (1) Including the rain, collision detection
and SPH particles animation (R+CD+SPH), reported in the
first line of Table I; (2) Simulating R+CD+SPH as well as
the Carpet visualization (second line of Table I); (3) Including
R+CD+SPH+C besides Splashes (R+CD+SPH+C+S).

The time scale of the rain is 0.025 and for the SPH
simulation is 0.15. The DTM is the used in Figure 8. All the

Fig. 9. Visual effect (in a augmented scale) obtained with splash animation.

TABLE I
TABLE LISTING THE FPS WHEN CONSIDERING RAIN (R), COLLISION

DETECTION (CD), SPH, CARPET (C) AND SPLASHES (S).

examples were simulated until 2500 frames. The number of
rain particles that enter the scene along the whole simulations
is around 60000.

Table I provides the FPS obtained for each simulation.
The last line of Table I gives the total number of SPH
particles that was generated, following expression (22), along
the simulation.

We observe that the framework achieves real-time perfor-
mance for K = 3. For K = 4 it is beyond real-time FPS in
the first line but it is nearby real-time in the other cases. In
the case of K = 5 the animation achieves a FPS that goes
behind the real time frame rate in all simulations.

It is clear from these results that the frame rate is very
dependent from the SPH simulation, whose computational cost
depends on the number of SPH particles (when increasing K
we reduce the rate of SPH particles generation). Therefore, we
do expect that a GPU implementation of the SPH will improve
the performance of the proposed framework.

V. CONCLUSIONS AND FUTURE WORKS

In this work we presented a framework for rain scene
animation in DTMs. The animating framework is composed
by a rain animation technique in GPU and SPH surface flow
simulation over the DTM. In the experimental results we
emphasize the power of the proposed model when combined
with efficient techniques for rendering. The reported frame
rates achieve real-time performance in some setups being very
promising.

A future direction for this work is the realization of a
parallel implementation of the 3D fluid model using GPU or
multicore platforms to improve performance. Besides we plain
to add the simulation (rain plus surface flow) in a real video.

ACKNOWLEDGMENT

We would like to thank CAPES/CNPq for the support
provided for this work. We also thank Sicilia F. Judice and
Ricardo Marroquim for all discussions and help.

REFERENCES

[1] O. Deusen, D. S. Ebert, R. Fedkiw, F. K. Musgrave, P. Prusinkiewicz,
D. Roble, J. Stam, and J. Tessendorf, “The elements of nature: interactive
and realistic techniques,” in ACM SIGGRAPH 2004 Course Notes, 2004,
p. 32.

[2] P. Rousseau, V. Jolivet, and D. Ghazanfarpour, “Realistic real-time rain
rendering,” Computers & Graphics, vol. 30, no. 4, pp. 507–518, 2006.

[3] A. Puig-Centelles, O. Ripolles, and M. Chover, “Creation and control
of rain in virtual environments,” The Visual Computer, vol. 25, no. 11,
pp. 1037–1052, Nov. 2009.

[4] K. Garg and S. Nayar, “Photorealistic rendering of rain streaks,” ACM
Trans. Graph., vol. 25, no. 3, pp. 996–1002, 2006.

[5] S. Stanik and W. Werman, “Simulation of rain in videos,” Int. J. Comput.
Vis. Texture, pp. 95–100, 2003.

[6] L. Wang, Z. Lin, T. Fang, X. Yang, X. Yu, and S. Kang, “Real-time
rendering of realistic rain,” in SIGGRAPH, 2006, p. 156.

[7] K. Garg and S. K. Nayar, “Detection and removal of rain from videos,”
IEEE Conference on Comp. Vis. and Patt. Recognition, vol. 1, pp. 528–
535, 2004.

[8] N. Wang and B. Wade, “Rendering falling rain and snow,” in SIG-
GRAPH, 2004, p. 14.

[9] Z. Feng, M. Tang, J. Dong, and S. Chou, “Real-time rain simulation,”
in Comp. Supp. Coop. Work in Design (CSCWD), 2005, pp. 626–635.

[10] N. Tatarchuk, “Artist-directable real-time rain rendering in city environ-
ments,” in SIGGRAPH Courses, 2006, pp. 23–64.

[11] S. Tariq, “Rain,” in Technical report (NVIDIA), 2007.
[12] Y. Yang, X. Zhu, J. Mei, and D. Chen, “Design and realtime simulation

of rain and snow based on lod and fuzzy motion,” in ICPCA, 2008, pp.
510–513.

[13] R. Green, “Spherical harmonic lighting: The gritty details,” Archives
of the Game Developers Conference, March 2003. [Online]. Available:
http://citeseer.ist.psu.edu/contextsummary/2474973/0

[14] P.-P. Sloan, J. Kautz, and J. Snyder, “Precomputed radiance transfer for
real-time rendering in dynamic, low-frequency lighting environments,”
in SIGGRAPH ’02: Proceedings of the 29th annual conference on
Computer graphics and interactive techniques. New York, NY, USA:
ACM, 2002, pp. 527–536.

[15] G. R. Liu and M. B. Liu, Smoothed particle hydrodynamics : a meshfree
particle method. New Jersey: World Scientific, 2003.

[16] T. Lenaerts, B. Adams, and P. Dutré, “Porous flow in particle-based fluid
simulations,” ACM Trans. Graph., vol. 27, no. 3, pp. 1–8, 2008.

[17] T. Harada, S. Koshizuka, and Y. Kawaguchi, “Smoothed particle hy-
drodynamics on GPUs,” in Proc. of Computer Graphics International,
2007, pp. 63–70.

[18] M. Müller, D. Charypar, and M. Gross, “Particle-based fluid simula-
tion for interactive applications,” in Proceedings of ACM SIGGRAPH
symposium on Computer animation, 2003.

[19] P. Kipfer and R. Westermann, “Realistic and interactive simulation of
rivers,” in Proc. of Graphics Interface, 2006, pp. 41–48.

[20] C. Hirsch, Numerical Computation of Internal and External Flows.
Livros Tecnicos e Cientificos Editora S.A., RJ-Brasil, 1988, vol. 1.

[21] C. Schlick, “An inexpensive BRDF model for physically-based render-
ing,” Computer Graphics Forum, vol. 13, pp. 233–246, 1994.

[22] Z.-X. Feng, M. Tang, J.-X. Dong, and S.-C. Chou, “Real-time rendering
of raining animation based on the graphics hardware acceleration,” Int.
Conf. on Comp. Supp. Cooperative Work in Design, vol. 2, pp. 734–739,
2005.

[23] S. Mandre, M. Mani, and M. P. Brenner, “Precursors to splashing of
liquid droplets on a solid surface,” Phys. Rev. Lett., vol. 102, no. 13,
Mar 2009.

