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Abstract—Many image-related applications rely on the fact
that the dataset under investigation is correctly represented
by features. However, defining a set of features that properly
represents a dataset is still a challenging and, in most cases,
an exhausting task. Most of the available techniques, especially
when a large number of features is considered, are based on
purely quantitative statistical measures or approaches based
on artificial intelligence, and normally are “black-boxes” to the
user. The approach proposed here seeks to open this “black-
box” by means of visual representations, enabling users to
get insight about the meaning and representativeness of the
features computed from different feature extraction algorithms
and sets of parameters. The results show that, as the combi-
nation of sets of features and changes in parameters improves
the quality of the visual representation, the accuracy of the
classification for the computed features also improves. The
results strongly suggest that our approach can be successfully
employed as a guidance to defining and understanding a set
of features that properly represents an image dataset.
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I. INTRODUCTION

The extraction of feature vectors is crucial for many
image-related applications, for instance pattern recognition,
content-based image retrieval or image mining, determining
the accuracy of the results achieved by them [1]. There exist
several algorithms to compute such vectors, each of which
with their own set of parameters, reflecting different prop-
erties of the image dataset under investigation. Therefore,
the choice of the set of features that provides the highest
classification rates or the most efficient retrieval poses as a
challenging accomplishment. Usually, such task requires a
priori knowledge of the image dataset [2]. Also, to build a
robust model several experiments may be required and this
is often a very expensive process [3].

In many cases, users start by selecting a pre-labeled set
of images and define the parameters for the feature extrac-
tion algorithm, which is frequently a tedious and laborious
task. Then, feature vectors are computed and classification
attained. High classification rates will be only achieved if the
set of features proves adequate for the image dataset. This
can only be assessed after the classification process has been
carried out. In other words, one cannot infer beforehand how
effective the computed features will be for the classification
process. Our goal is to provide effective tools to support

feature definition speeding up the setup procedure before
classification.

In this paper we propose a new approach to the vi-
sual analysis of feature spaces using point placement or
projection techniques [4]. Projection techniques work by
mapping high-dimensional data into a lower dimensional
visual space, whilst retaining, up to an extent, the distance
relationships defined in the original data space. Initially,
a set of features is extracted. Then, the computed feature
vectors are visualized in a 2D representation that reveals the
similarity relationships between the images under analysis.
This visual representation is used to determine if this set of
features successfully represents the image dataset, according
to an expert point of view. If the similarity relationships
match with what is expected by the expert – similar images
are closely placed and the dissimilar ones are positioned
far apart –, the set of features properly represents the
dataset and can be considered for other tasks, such as
classification. Otherwise, the parameters can be changed or
another extraction algorithm can be employed, producing
a new set of features which can then be visually explored
to check if it properly represents the dataset. This provides
an interactive visual approach which help users to construct
better models for image processing.

The main contributions of this paper are:
• an approach for visual exploration of feature spaces

targeted at converging to useful features for image pro-
cessing, according to the expert point of view;

• an interactive visual framework which help users to
better “understand” different sets of features;

• a method to objectively evaluate the quality of projec-
tions which match with the concept that better projec-
tions result in more appropriate feature spaces, specially
for classification tasks.

The remaining of this paper is organized as follows.
Section II describes related work on visual analysis of fea-
ture spaces. Section III presents background information on
feature extraction and information visualization techniques
employed here. Section IV details our approach through
a simple example. Section V presents the results of the
experiments performed in order to evaluate the proposed
approach. Finally, conclusions and directions for future
research are given in Section VI.



II. RELATED WORK

Employing visualization techniques to explore and to
draw knowledge from datasets is an efficient way to combine
human intelligence with the powerful force of computa-
tion [5]. Several visualization techniques and tools have been
developed enabling users to interact with abstract data [6],
some of which specially designed to explore multidimen-
sional spaces resulting from the feature extraction process.

One of these approaches was proposed by Rodrigues
et. al. [7] (further extended in [8]). The aim is to give
support to the analysis of the features employed on similarity
queries for a content-based image retrieval system. Once the
feature space is composed, a visual representation is created
showing that the best visual representation conveys the best
precision and recall measures when a query is executed on
the data. However, the visual representation is not used to
help an user to interactively define the best set of features
or the best set of parameters to extract the features, but only
to confirm that the query precision and recall matches with
the visual representation quality. In our approach, the visual
representation is meant as an interactive guide to explore,
define and refine the set of features, giving insight on how
the extraction algorithm parameters or the weighting of the
features affect the similarity relationships between groups or
individual images.

PEx-Image [9] is a similar tool, which employs a point
placement visual representation to explore image collections.
This tool provides interactive visualizations to aid on the
exploration of feature spaces, and supports the comparison
between different spaces using coordination techniques. The
main difference between PEx-Image and the approach pro-
posed is that the former aims at creating the best visual
representation given a feature space, while here we seek to
create a visual representation which best reflects the feature
space, that is, a visual representation that is as good as the
feature space. Therefore, our approach gives more precise
insight in the similarity relationships between images. In
addition, in PEx-Image the quality of a visual representation
is only defined according to the user’s point of view. Here we
use a well-known measure, borrowed from the data-mining
community, to help users assess such quality, thus reducing
the subjectiveness of conclusions based purely on the visual
analysis.

III. BACKGROUND

A. Feature Extraction
Feature extraction is the process of capturing quantitative

characteristics of an <w×h image and place them into a
<n dimensional feature vector, in which n is the number
of values extracted, w and h are image width and height,
respectively. Several feature extraction methods, also known
as descriptors, have been proposed in the literature [10].
In this paper, traditional texture analysis methods as co-
occurrence matrix [11] and Gabor filters [12] features are

used. In the former, 5 measures (energy, entropy, inertia,
inverse difference moment, and correlation), 5 distances
and 4 directions are considered, summing-up 100 distinct
features. In the latter, 16 features using energy of the
responses of Gabor filters are computed (4 orientations - 00,
450, 900 and 1350 - and 4 scales). In addition, experiments
are also carried out using features extracted from R, G, B
plane, yielding 48 features.

We also test features extract using the bag-of-visual-
features (BoVF) model. The process for constructing a BoVF
model starts by selecting a set of keypoints over the images.
This selection is done sparsely or densely. Several local
regions detectors have been proposed in the literature [13].
Then, the descriptors are computed around the keypoints. In
this work, the keypoints are obtained with the Harris-Laplace
point detector or dense sampling [13]. After the points
selection and description, each vector is quantized against
a visual codebook or vocabulary. Codebooks are usually
constructed by using a method to cluster the keypoints. In
this work, the visual codebook is created via k-means [14]
clustering algorithm. Once the vocabulary is defined, each
keypoint is assigned to the codebook element that is closest
in the Euclidean space. The result is a histogram that
represents the BoVF model normalized to sum-up 1.

In this work, a visual representation of the feature space
is carried out right after feature extraction. Such visual
representations are constructed by employing multidimen-
sional projections techniques, which are detailed in the next
section.

B. Multidimensional Projection Techniques

Multidimensional projection techniques, or simply projec-
tion techniques, seek to create visual representations that
enable users to employ their visual ability to recognize
patterns and structures present in the dataset. Each data
instance (an image) is represented as a visual element, such
as a circle, point or sphere, and mapped into a visual space
that may be either 1D, 2D, or 3D. The relative positions
of these elements reflect some type of relationship between
data instances, the most common being the similarities or
neighborhood relationships [15]. In this case, if the elements
are closely placed on the final layout, it indicates that the
data instances they represent are similar according to a
certain distance. If the elements are projected far apart, it
indicates that the objects they represent are not related.

Currently, there exist a number of different techniques
considering different aspects of data distribution, such as
the distance distribution, non-linear relationships among the
dimensions, etc. (we refer to [15] for more details). Here
we are interested in a very accurate technique, that is,
the one which reflects as much as possible on the visual
layout the distance relationships between the data instances
in the original space. To accomplish that Classical Scaling
is considered the best choice. In Classical Scaling, a doubly-



centered distance matrix between all pairs of data instances
is defined, and a spectral decomposition is applied to recover
the Cartesian coordinates of the elements in the visual
space. It is possible to prove that if the distance function is
Euclidean, the projected space presents the smallest mean
quadratic deviation from the original space between all
possible reduced spaces. Therefore, preserving as much
as possible the distance relationships amongst the data
instances when they are projected on the visual space [16].
Formally, dij is the distance between points xi and xj , and
placed in the position ri and rj in projection, respectively.
Finally, the minimum of the Equation 1 is computed.

P =
∑
i

∑
j>i

(dij − ‖ri − rj‖)2

dij
(1)

C. Assessing the Projection Quality

The visual analysis approach proposed in this work aims
at verifying whether similar images, according to the user’s
point of view, are also similar according to the extracted
set of features used to represent them. Although users may
employ their visual abilities to determine the quality of
a projection, it is rather difficult to tell small differences
resulted from slightly modified set of features. In order
to reduce this subjectiveness, a measure called silhouette
coefficient [17], which was originally proposed to evaluate
results of clustering algorithms, is employed.

The silhouette coefficient measures both the cohesion
and separation between instances of clusters. Consider an
instance i belonging to cluster, its cohesion ai is calculated
as the average of the distances between i and all other
instances belonging to the same cluster. The separation bi
is the minimum distance between i and all other instances
belonging to the other clusters. The silhouette of a projection
is given as the average of the silhouette of all instances,
where n is the number of instances. In Equation (2) it is
formalized.

S =
1

n

n∑
i=1

(bi − ai)

max(ai, bi)
(2)

The silhouette can vary between −1 ≤ S ≤ 1. Larger
values indicate better cohesion and separation between
clusters. In our approach, clusters are composed taking
into account the pre-labeled instances, and the silhouette
indicates whether images belonging to the same class are
more similar between themselves than images belonging to
other classes.

The usefulness of our approach is presented in the next
section by means of a simple application.

IV. AN APPROACH TO VISUAL FEATURE SPACE
ANALYSIS

The diagram of Figure 1 summarizes the approach sug-
gested here. First, a set of image features is extracted and

then projected onto a 2D space. Upon user’s agreement
on the goodness of the provided result (based on visual
inspection or observation of the silhouette coefficient), the
set of feature can then be used for other tasks, such as
classification, retrieval or data mining. If significant mis-
placement is found, the parameters or extraction methods
used to compute features ought to be changed, and the
process re-executed. This process is performed until the
expected outcome is reached, that is, until the projection
separates what is similar from what is not.

Figure 1. Proposed visual exploration of the feature space.

To exemplify our approach we propose an initial experi-
ment formed by a set of 70 texture images from the Brodatz
dataset [18], grouped into 7 classes with 10 images each.
Features are extracted using Gabor filters. The feature space
visualization is depicted in Figure 2. Images are represented
as circles, and are colored according to the class they belong
to. For clarity, one image sample of each class is placed near
to its corresponding cluster. In this projection 5 classes are
well separated, but 2 are mixed up (top right-hand corner).
This is a clear indication of a limited discriminant power
of the chosen feature set. A closer look, on the other hand,
reveals that in terms of texture pattern, both mixed up classes
are very similar. Therefore, it is up to the user to decide
whether such classes should in fact be considered as a single
class. If that is the case, this can be taken as a good set of
features. Otherwise, a new set should be evaluated.

Figure 2. Analysis of an image dataset containing 7 different classes. 5
classes of images are well distinguished, but 2 are mixed-up, indicating
that the employed features could not separate these 2 classes.

The experiment is extended with the addition of 3 new
texture classes (marble and two wired-frame classes), and
the resulting projection is shown in Figure 3(a). The same set
of parameters is used. Observe that the marble class, whose



sample is highlighted in red, appears scattered throughout
the projection. The marble images normally exhibit non-
uniform texture elements, which vary both in size and
orientation. This behavior is illustrated in Figure 3(b) that
shows the zoomed-in area of the marble class depicted in
Figure 3(a). Since a fixed set of Gabor filters parameters
(for orientation and scales) is used, it is unlikely that all
subtleties in marble textures with varied sizes and orientation
can possibly be captured.

(a) (b)

Figure 3. Projection of 10 classes image dataset (a) and a zoom in of the
marble class (b). The employed features cannot distinguish the different
wire-frame patterns, and do not define a uniform marble class.

For the wired-frame classes, the projected samples are
mixed up, as can be observed at the top left-hand corner
of Figure 3(a). To reach better separability, only Gabor
features with 900 orientation are now selected and a new
projection is computed, as shown in Figure 4. Notice that
these two classes are now separated, for texture patterns
with 900 orientation are different in each class. However,
when compared to the previous projection, the remaining
classes are more spread. In this case, the user can conclude
that the orientation 900 is effective in separating these 2
new wired-frame classes of images, but the cohesion of
the other classes is impaired. This conclusion is not easy
to reach without feature space visualization. The silhouette
coefficients computed for Figure 4 and Figure 3(a) are
0.429 and 0.474, respectively. Although similar, those values
inidicate that the features explored in Figure 4 are better
than those explored in Figure 3(a), matching with the visual
inspection.

Whichever orientations have been chosen in the previous
experiment, it is possible to notice that Gabor features failed
to separate samples of the two Brodatz’s Linen classes. Their
samples are colored in brown and cyan (top-right corner
of Figure 2). They are also present in Figures 3(a) and 4.
These two classes exhibit very similar texture patterns and
closer inspection reveals a slight variation in the pixel inten-
sities only. Seeking better separability, we investigate new
features produced by the co-occurrence matrix technique,
parameterized as described in Section III. The resulting
projection is shown in Figure 5. Notice that the brown

Figure 4. Projection for the same dataset shown in Figure 3, but with
a small set of Gabor features. Now the 2 wired-frame classes are better
separated, although the cohesion of other classes is impaired.

and cyan samples (enlarged icons) are now well separated,
as well as the other classes of images, indicating that the
co-occurrence features, when compared with Gabor filters,
produce a better representation for the dataset. The silhouette
coefficient reinforces this perception. Projection with co-
occurrence features is 0.583, against 0.474 for the Gabor
experiment.

Figure 5. Projection for the same dataset shown in Figure 4 with co-
occurrence features. Both visual inspection and higher silhouette coefficient
indicate a better representation for the dataset if compared to that shown
in Figure 3.

In the next section we apply the same approach to
more complex datasets, showing that it works in different
scenarios.

V. EXPERIMENTAL RESULTS

In order to evaluate our approach, empirical experiments
are executed on three different image datasets. Next they are
described.

A. Datasets

The KTH-TIPS database [19] consists of 10 colorful
texture classes. Images are taken at 9 different scales. Each
scale is viewed under three illumination directions and three
poses, resulting a total of 9 images per scale, and 81 images
per material.

The Corel-1000 database [20] contains 1000 images from
natural scenes and artificial objects separated in 10 classes.



It is frequently used for the evaluation of image retrieval
methods.

The Caltech database [21] contains 6 unbalanced classes
and a total of 3, 812 images: airplane side (1074 images),
buildings (750 images), car rear (526 images), face (450
images), leaf (186 images) and motorbike (826 images).

B. Experimental Setup

In the following experiments, along with traditional fea-
ture extraction methods, we also employ the bag-of-visual-
features (BoVF) model. The BoVF keypoints are obtained
with the Harris-Laplace point detector and dense sampling,
depending on the nature of the images. For texture images –
KTH-TIPS database – we employ the first, and for outdoor
images – Corel-1000 and Caltech databases – we use the
second one. Then, texture or color features are computed.
Color features are extracted over the area of 10 pixels around
the keypoints (see Section III). After detecting keypoints and
computing their descriptors, the visual codebook is created
by the k-means [14] clustering algorithm. The size K of
the vocabulary ranges from 50 to 300 and the number of
keypoints, or sampling, ranges from 50, 000 to 300, 000.

For classification, Support Vector Machines (SVM) [22],
k-means [14] and Nearest Neighbors (K-NN) [23] with
Euclidean distance measure are used. The LibSVM imple-
mentation [24] is used to train the classifier. For the K-
NN classifier, a value of K = {10, 30, 50, 70} is set. For
the k-means, the number of clusters is set to the number
of classes of each dataset. We employ the SVM with
two kernels, linear and radial basis function (RBF), for
multi-class classification. For each vocabulary size, the cost
parameter is optimized using 10-fold cross validation with
a parameter range of 2−10 through 210 with 10 as a step in
logarithmic scale.

C. Results

Experiment 1: First, we evaluate our approach for tex-
ture classification and compare it to the silhouette results
obtained from different projections. Figure 6 shows the
classification rates for different classifiers and the silhouette
coefficient of the resulting projections. Features are com-
puted with the co-occurrence descriptor for 5 distinct values
of the distances parameter (1 to 5). We also investigate the
performance for ALL features combined. The performance
of the classifiers and silhouette coefficients are indicated
in the y axis, while the distances are indicated in the x
axis. Notice that the changes in the silhouette coefficient
is reflected in the performance of the classifiers. As the
coefficient rises or falls the classification rates also grow
or drop, accordingly. This behavior confirms our hypothesis.
Distance 1 provides the best classification rates, while values
ranging from 2 to 5, yield lower rates. The same occurs
with the silhouette coefficient, matching our hypothesis. This

result indicates that projections and their silhouettes can
be used as an interesting guide to defining the distance
parameter of the co-occurrence feature extraction algorithm.

Figure 6. KTH-TIPS database evaluation influenced by distances of the
co-occurrence matrix descriptor.

We also evaluate our approach for other traditional texture
analysis methods. Figure 7 shows the results for three
different descriptors: Gabor filters (gabor), co-occurrence
matrix (co occurrence) and Gabor filters applied on the
R, G, B plane of the image (rgbgabor). We can observe
that rgbgabor is superior for both classification rate and
silhouette coefficient. There is a clear distinction in per-
formance between co occurrence (ALL distances) and
rgbgabor. The accuracy of SVM with RBF kernel for
co occurrence, gabor and rgbgabor is 90.37%, 94, 93%
and 98.39%, respectively. The silhouette coefficient also
reflects this accuracy, yielding values −0.3727, −0.2535
and −0.2505. The corresponding projections are shown in
Figures 7(b), 7(c) and 7(d). As we move from left to right,
we perceive images with coarser textures.

(a)

(b) Gabor (c) Co-occurrence (d) RGBGabor

Figure 7. Comparing different sets of features obtained using traditional
texture analysis methods extracted from the KTH-TIPS database. Again
the classification rates matches the silhouette coefficients, showing the
generality of our approach.

In order to investigate the contribution of the tex-
ture and color approaches for the separation of the im-



ages on the KTH-TIPS database, we apply the BoVF
model with dense sampling and three color descrip-
tors: colormoment invariants [25], rgbhistogram and
sift [26]. In Figure 8(a), the classification rates and sil-
houette coefficients are presented in the y axis, while the
descriptors are presented in the x axis. It can be ob-
served that colormoment invariants do not perform well.
Rgbhistogram exhibits a slight improvement, followed by
the sift method. Their projections are illustrated in Fig-
ures 8(b), 8(d) and 8(e), respectively. Figure 8(c) shows the
same projection of Figure 8(b), with circles replaced by the
images they represent. To overcome the visual overlapping
the center of the projection is zoomed in and shown at the
top right-hand corner with smaller points in Figure 8(e).

Normally, for more complex image datasets it is desirable
to combine different feature extraction approaches to capture
as much as possible the underlying information present on
the images. However, the resulting feature spaces can be
of very high dimensionality, which in most cases impair
the precision of classification tasks. We then combine the
three previous descriptors and introduce an intermediate
dimensionality reduction step in our approach with Prin-
cipal Component Analysis (PCA) [27] method, reducing
the space to 10 dimensions. The nearest-neighbor classifi-
cation rates are 85, 92% and 99.12% for the original and
the reduced space, matching with the silhouette cofficient,
−0, 2547 and 0.1290, respectively. Figures 8(f) and 8(g)
present the projection for the combined descriptors and the
intermediate step using PCA. Finally, it is worth noting
that nearest neighbor classification has a higher accuracy
compared to the SVM classifier. This may be associated
to the good separability seen in the projections of the
Figures 8(d), 8(e) and 8(g).

Experiment 2: In this experiment, we present a compara-
tive study of our approach for evaluating local and global
features. The RGB histogram descriptor is employed for
both approaches. Local features are computed using the
BoVF model. Figure 9 shows the classification rates in
the y axis, while global and local features are indicated
in the x axis. We optimize two parameters of the BoVF
model: the vocabulary size and the number of keypoints.
Figure 9(a) and 9(b) show the results for vocabulary sizes
with 50, 000 and 100, 000 keypoints, respectively.

It can be observed that the local approach performs sig-
nificantly better than the global one. The highest silhouette
coefficient (K = 250) is 0.0055 for 50, 000 keypoints and
−0.0022 for 100, 000 keypoints. The global rgbhistogram
silhouette coefficient significantly reduce to −0.1029. The
same behavior is observed for the classification rates, which
are 79.3% for 50, 000 keypoints and 79.78% for 100, 000,
reducing to 64.30% for global rgbhistogram. With the best
K at hand, we perform two others experiments: 200, 000
and 300, 000 keypoints. The result shows that our approach

(a)

(b) Color Moment Invariants (c) Images

(d) RGB Histogram (e) Sift

(f) Combined (ALL) (g) Dimensionality Reduction

Figure 8. Projections of different feature spaces extracted from KTH-TIPS
database. Applying the PCA to reduce the dimensionality results in better
classification rates and silhouette values, matching with class separability
observed on the produced projection (colors indicates the classes).

is consistent, being a useful method to reduce the time spent
to determine the better vocabulary size on BoVF model.

Experiment 3: In this experiment we again evaluate the
outcome vocabulary size of the BoVF model regarding
the classifications rates and silhouette coefficient. How-
ever, in addition to the RGB histogram descriptor, we



(a) 50,000 keypoints (b) 100,000 keypoints

Figure 9. Results for vocabulary sizes of BoVF model considering 50, 000
keypoints and 100, 000 keypoints for the Corel-1000 database.

use two different methods: colormoment invariants and
sift. Figure 10 shows the classification rates and silhouette
coefficients in the y axis, and the vocabulary size in the x
axis. Figure 10(a) and 10(b) show the results for 50, 000
and 100, 000 keypoints using the sift method. The highest
silhouette coefficient and classification rate is obtained for
K = 100.

(a) 50, 000 (b) 100, 000

Figure 10. Results for different vocabulary sizes of BoVF model
considering 50, 000 keypoints and 100, 000 keypoints for the Caltech
database.

We also evaluate other color methods to build the BoVF
model, taking K = 100 as the best value for the vocabulary
size. Figure 11 shows the classification rates and silhouette
coefficient for three descriptors: colormoment invariants,
rgbhistogram and sift. In addition, features are ex-
tracted by the global rgbhistogram method. We can see
that global rgbhistogram attain the worst results. The
colormoment invariants features are slightly better. For
the local rgbhistogram an increase in performance is
observed. All classification rates follow the silhouette co-
efficient obtained from the projection of the feature sets.
Sift achieves the best performances with 95, 42%. For
the K-NN classification, 30, 50 and 70 neighbors are
used. Figures 11(b) and 11(d) show the projections for
the best descriptor and the worst descriptor. The pro-
jections in which circles are replaced by images are
shown in Figures 11(c) and 11(e). It is worth noting that

global rgbhistogram method is known to be very influ-
enced by the image background, which is confirmed by
the projections. On the other hand, sift method, which
is strongly recommended to recognize object categories in
the presence of various backgrounds without segmentation,
render a better projection. Therefore, projections are useful
tools to support the expert to make decisions about what
features sets should be used.

(a)

(b) Global RGB Histogram (c) Images

(d) Sift (e) Images

Figure 11. Comparison using projections of two different feature spaces.
The best projection, in terms of class separation, matches with the clas-
sification rates, indicating that projections can be useful tools to support
experts about what kind of feature should be used to represent an image
dataset.

VI. CONCLUSIONS

This paper has presented a novel approach based on
interactive information visualization representations to ex-
plore feature spaces. The results presented here support
the hypothesis that as the quality of the employed visual
representations increases, the results of correct classification
rates also increases. Therefore these visual representations



can be successfully used as a guide to understanding the
features behavior in terms of grouping the similar images
and separating the dissimilar ones. We also define an index,
the silhouette coefficient, to help users assess the visual
quality of the projections, overcoming problems related to
the subjectiveness involved in the visual analysis.

Our work does not intend to be an approach for fea-
ture selection towards finding the best set of features for
classification. Instead, we are more focused on supporting
experts on the task of understanding the outcome of different
feature extraction algorithm, and the effect of changing their
parameters. Therefore this can be considered as a pre-step
to the feature selection process, where an expert can prune
the possibilities of choosing the algorithms and parameters
for the feature extraction, speeding-up the whole process
of finding the most appropriate space to represent a set of
images.
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