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Abstract
2D electrophoresis is a well known method for protein

separation which is extremely useful in the field of pro-
teomics. Each spot in the image represents a protein accu-
mulation and the goal is to perform a differential analysis
between pairs of images to study changes in protein content.
It is thus necessary to register two images by finding spot
correspondences. Although it may seem a simple task, gen-
erally, the manual processing of this kind of images is very
cumbersome. The complete task of individual spot match-
ing and gel registration is a complex and time consum-
ing process when strong variations between correspond-
ing sets of spots are expected. Besides, because an one-
to-one mapping is expected between the two images, miss-
ing spots there may exist on both images (i.e. spots with-
out correspondence). In order to solve this problem, this
paper proposes a new distance together with a correspon-
dence estimation algorithm based on graph matching which
takes into account the structural information between the
detected spots. Each image is represented by a graph and
the task is to find an isomorphism between subgraphs. Suc-
cessful experimental results using real data are presented,
including a comparative performance evaluation.

1. Introduction
In this paper, the problem of 2D electrophoresis gel

matching is addressed. Two-dimensional electrophoresis is
a well known method for protein separation which is ex-
tremely useful in the field of proteomics. The basic idea is to
separate proteins contained in a sample using two indepen-
dent properties such as isoelectric point and mass. An ex-
ample of images that are obtained is given in Figure 4. Each
spot in the image represents a protein accumulation and its
size depends on the amount of protein present in the sam-
ple. The grayscale on top of each image is placed to allow
grayscale calibration. Although it may seem a simple task,
the manual processing of this kind of images is very cum-
bersome. Furthermore, since gel electrophoresis is gener-
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ally used to compare samples, several pairs of images must
be compared during a single experiment. For this kind of
differential analysis, it is necessary to register two images
by finding spot correspondences (Figure 1). One of the rea-
sons for the popularity of 2D gel electrophoresis is its sim-
plicity. As a counterpart, the experimental setting and the
materials used do not allow a highly controlled experiment.
This means that strong variations between corresponding
sets of spots are in general expected.

All these elements show that, although 2D gel images
may seem simple, the complete task of individual spot
matching and gel registration is a complex and time con-
suming process.

Most of the existing methods for gel matching does
not take into account the structural information between
the spots to obtain the correspondence. Instead, they usu-
ally start by extracting point features to represent the spots
which are then used for point and gel matching. In some
cases these point features can be used to establish point
correspondence before obtaining the complete gel match-
ing [8]. In [8] the authors present a method to match sets
of 2D points using an iterative algorithm that combines
point correspondence and transform estimation. In order to
establish point correspondences they separated the proce-
dure into distance computation and correspondence estima-
tion. Finally, based on the point correspondence they es-
timate a transformation between both sets of 2D points.
These two steps may be iterated to refine the results. The
authors present a detailed evaluation for different distances
between points and different point correspondence estima-
tions. Given two sets of 2D points x = {x1, ..., xN} and
y = {y1, ..., yM}, and a distance dij = d(xi, yj), the idea is
to compute the correspondence between points. They eval-
uate the Euclidean distance and the Shape Context distance
[4] for point matching. Regarding the correspondence es-
timation they propose several methods: Closest Point, k-
Closest Points, Bi-Partite Graph Matching and other graph
based ones.

The novelties in this article are (1) the introduction of a
new distance that includes structural information in order to
solve the gel matching problem, together with (2) an adap-
tation of the correspondence estimation algorithm based on



Figure 1. An obtained correspondence for a pair of gel images.

previous work [7] in order to obtain an isomorphism. Exist-
ing solutions for 2D gel registration spot matching are based
on distances between pair of points (one from each image).
In our case, the proposed distance reflects structural infor-
mation of both images using corresponding vectors, as well
as local shape information using Shape Context. Each input
image is represented by a graph, where each point is repre-
sented by a vertex. Directed edges are created between ver-
tices when there is a structural relation between those ver-
tices (see Figure 3).

The original algorithm [7] calculates an homomorphism
in order to solve a segmentation problem based on wa-
tershed basins. In our case, an isomorphism between the
two graphs is necessary in order to find a correspondence
between the two input gel images. In this case, a post-
processing is performed and the proposed greedy algorithm
minimizes:

E = α
∑

vertices

dSC + (1− α)
∑
edges

dS .

The first term dSC represents the Shape Context distance
and compares pairs of vertices representing the correspond-
ing points. The second term dS consists of the Structural
distance which takes into account the ’edge costs’. Both
terms are balanced by a parameter α, which consists of a
real number between 0 and 1.

The remaining of this paper is organized as follows. It
starts, in Section 2, with a brief description about the ini-
tial step: the detection of the spots in each input gel image.
The shape and structural distances are given in Sections 3
and 4, respectively. In Section 5 there is a detailed descrip-
tion about the proposed algorithm, followed by some exper-
imental results in Section 6. Finally, the conclusions and ob-
servations are given in Section 7.

Figure 2. Detection of spots.

2. Spot Detection
As mentioned in the Introduction, matching two gel im-

ages should be based on invariant features present on them,
such as points representing each spot. The algorithm pro-
posed in [3] is used for the detection of these points. This al-
gorithm is based on the detection of meaningful spots where
meaningfulness is determined by its contrast and shape. The
point descriptor of the spots is the darkest point inside it, i.e.
the peak of protein concentration. Figure 2 illustrates the re-
sult of the meaningful boundaries detection algorithm ap-
plied to a real pair of gel images.

3. Spot Distance using Shape Context
The best methods for spot matching are based on point-

matching techniques. In this paper, the Shape Context (SC)
[4] metric is adopted, inspired by [8] where this metric was



applied to gel images. The idea behind SC is to describe
each point (spot) with the distribution of points on its neigh-
borhood. Using a set of bins in polar coordinates, the num-
ber of points in each bin is computed to obtain a 2D his-
togram in polar coordinates. The normalized histogram at
point i is denoted as hi(k), where the index k identifies the
bin. Given this metric we can compute the distance between
the SC of two points i and j using the χ2 distance:

dχ2(SCi, SCj) =
1
2

∑
k

[hi(k)− hj(k)]2

hi(k) + hj(k)
(1)

When comparing two SC, small discrepancies between
corresponding points may exist. These discrepancies may
have different sources. First, there are genuine differences
due to the appearance or missing spots. Second, there is the
possibility of misdetection or errors in spot detection. Third,
there may also be gel deformation. The algorithm proposed
in [3] proposes kernel estimation of the histogram to deal
with these discrepancies. This modification of SC showed
robustness and better generalization capabilities.

At the end of this step of spot matching we obtain a ma-
trix C where each entry Cij = d(SCi, SCj). Therefore, for
each spot in one image we obtain the similarity with each
spot in the other one.

4. Structural Distance
Besides Shape Context, structural information is used in

the proposed algorithm to help the task of obtaining a good
solution for the 2D gel registration spot matching.

First, the detected spots are represented as 2D points, as
shown in Figure 3(a). In order to evaluate the structural dis-
tance, each input image is represented by a graph, where
each 2D point is assigned to a vertex, and edges are cre-
ated in order to represent structural relations between ver-
tices. The proposed method is inspired by the graph match-
ing approach for image segmentation described in [5, 6, 7].

More specifically, one of the two input gel images is
chosen to be the model (and the other is referred sim-
ply as input). The model graph contains the structural in-
formation, as shown on the left of Figure 3(b), being de-
noted by Gm = (Vm, Em), where Vm is the set of vertices
and Em the set of edges. Similar notation is used for the in-
put graph Gi. The task is to associate each input vertex vi
to a model vertex vm, where each association is denoted by
the pair of vertices (vi, vm), vi ∈ V i and vm ∈ Vm. Be-
cause an one-to-one mapping is expected between the two
graphs, missing spots there may exist on both images (i.e.
spots without correspondence), and the problem reduces to
finding an isomorphism between two subgraphs, a subgraph
of Gm and a subgraph of Gi.

When considering structural information, each vi ∈ Vi
tends to be associated to the nearest vm ∈ Vm as shown

(a)

(b)

(c)

Figure 3. (a) Detected spots. (b) The struc-
tural information extracted from the left im-
age superposed to the right image. (c) The
deformation graph Gd due to a pair (vi, vm).

on the right of Figure 3(b). Due to detection errors, out-
liers may exist. There is no correspondence to such outlier
vertices. Hence, the problem of gel registration requires that
the solution represents a bijection between subsets of Vi and
Vm. The original algorithm [7] associates each vi ∈ Vi to
exactly one vm ∈ Vm, but the reversal is not always true.
Eventually, distant vi’s could be assigned to a same vm but
with higher costs. In this case, for each vm ∈ Vm, it is
enough to keep the cheapest pair (vi, vm), vi ∈ Vi, in the so-
lution and to discard the pairs with ’repeated’ vm. This post-
processing guarantees the expected one-to-one mapping.

The proposed algorithm is based on a greedy strategy
and is described in detail in the next Section. For each vi ∈
Vi, it examines each candidate pair (vi, vm), vm ∈ Vm, and
includes the cheapest pair in the solution.

In order to calculate the structural distance related
to each candidate (vi, vm), we use an auxiliary struc-
ture, called deformation graph Gd, which represents
the local structure deformation caused by (vi, vm) on



the model Gm [7]. Figure 3(c) illustrates this idea. For
a given Gm and a candidate pair (vi, vm), the corre-
sponding deformation graph Gd is shown, where vd
is the deformation vertex obtained by taking the av-
erage of the coordinates of vi and vm. Note that the
deformed edges ed ∈ Ed which are actually (possibly) de-
formed (compared to the model Gm) are those with an end
at vd.

The structural distance is defined as:

dS(ed, em) = δdA(ν(ed), ν(em))
+(1− δ)dM (ν(ed), ν(em))

(2)

where ed is a deformed edge and em the corresponding
model edge. These edges are considered as directed edges
and their endpoints are vertices representing bidimensional
points. In this case, their corresponding vectors are taken
into account, being denoted as ν(ed) and ν(em), respec-
tively.

The structural distance consists of two terms: angu-
lar (dA) and modulus (dM ) distances; dA(ν(ed), ν(em)) =
|cosθ−1|

2 , where θ is the angle between the two vectors;
dM (ν(ed), ν(em)) = ||ν(ed)|−|ν(em)||

dmax
, where dmax is a nor-

malization constant, and |ν(ed)| denotes the vector modu-
lus of ν(ed) (same for ν(em)).

The angular and modulus distances are weighted by a pa-
rameter δ, which is a real number between 0 and 1.

5. Spot Matching
The Shape Context distance defined by Equation 1 to-

gether with the structural distance in Equation 2 are used to
guide the matching process to find potential correspondence
candidates. The goal of the spot matching step is to find
a unique correspondent for each spot. Since natural differ-
ences and detection errors are expected, some of the spots
may not be matched.

The proposed algorithm is iterative and examines each
input vertex vi ∈ Vi at a time. For each vi, the algorithm
chooses the cheapest vm ∈ Vm and includes the corre-
sponding pair (vi, vm) in the solution. The cost of each can-
didate pair (vi, vm) is evaluated by the following equation:

c(vi, vm) = αdSC(SC(vi), SC(vm))

+(1− α) 1
ne

∑
dS(ν(ed), ν(em))

(3)

which takes into account the shape context and the struc-
tural distances: dSC = dχ2 (Equation 1) and dS (Equa-
tion 2). The first term is the SC distance between the two
points represented by vi and vm, using the χ2 distance. The
second term represents an average of ne deformed edges
considered in the computation of the structural distance.

In order to compute a correspondence, the structural in-
formation plays an important role. It drastically restricts

the number of possibilities and permits a rapid conver-
gence to good solutions. The final solution is a set P of
pairs (vi, vm), vi ∈ Vi, vm ∈ Vm, which includes only
the spots having correspondence. The possibly outliers and
spots without correspondence are discarded from the solu-
tion during the post-processing step. For each vm ∈ Vm,
the algorithm evaluates the cost of each pair (vi, vm) ∈ P ,
vi ∈ Vi, and keeps only the cheapest pair (v′i, vm). All the
remaining pairs (vi, vm), vi 6= v′i are removed from P .

A pseudo-code of the proposed algorithm is presented
below:

• Input: Gi and Gm
• Output: Set P of pairs (vi, vm) representing the graph

matching between Gi and Gm.

1: P = ∅
2: for each vertex vi ∈ Vi do
3: cmin ←∞
4: vmin ← NULL
5: for each vertex vm ∈ Vm do
6: c← c(vi, vm)
7: if c < cmin then
8: cmin ← c
9: vmin ← vm

10: end if
11: end for
12: P ← P ∪ {(vi, vmin)}
13: end for
14: Post-processing of P : for each vm, keep only the

cheapest pair (vi, vm) in P .
15: return P

6. Experimental Results
In this Section, the benefits of the proposed algorithm are

compared to the Bipartite Graph Matching (BGM) [4] algo-
rithm, which is one of the methods proposed in the litera-
ture [8]. For the ground truth data, images from [1] were
processed with the method proposed in [3] and those man-
ually verified.

Given a matrix of similarity between spots, Cij , the idea
of BGM is to find the optimal assignments which minimize
the total cost of matching:

min
Pij

∑
ij

CijPij (4)

where Pij is a permutation matrix which encodes the
matching. In order to reject the outlier spots, a set of vir-
tual spots with cost ε is included for rejection purposes.
This is done by using an expanded matrix Cε = [C ε].
The best results are defined by selecting the parame-
ter ε∗ which minimizes the number of errors.

In order to test the robustness of the proposed algorithm,
the evaluation was divided into two parts. First, only shape



information is affected when some of the spots are artifi-
cially removed from both images and thus increasing the
number of outliers. In the second experiment, both struc-
tural and shape information is affected by gaussian noise
on the points coordinates to increase the nonrigid transfor-
mations present on both images. Results from both experi-
ments using the pair of gels in Figure 4 are shown.

Figure 4. An example of a pair of gel images.

6.1. Experiment 1
In this first experiment, each pair of gel images were sub-

jected to a degradation of the shape information when some
spots are artificially removed from each image. This simu-
lates the possible errors during detection and the natural dif-
ferences between corresponding spots1.

Subsets of 70, 80 and 90% of the original points were
used to compare the proposed matching algorithm (which
combines shape and structural information) against BGM.

1 This experiment is equivalent to have an artificially generated set of
corresponding image pairs.

For each percentage, 100 trials were considered. For each
artificially obtained pair, the amount of errors in the corre-
spondence was computed (according to a ground truth) for
different values of α and ε.

The parameter α in Equation 3 controls the balance be-
tween shape and structural information; for α = 0 there
is only structural information and for α = 1 the algorithm
uses only shape information. For all tests, the proposed al-
gorithm used δ = 0.5 in order to give the same importance
to both terms in Equation 2. The mean and standard devia-
tion corresponding to the best results obtained from both al-
gorithms on the pair in Figure 4 are illustrated in Table 1,
and the complete behaviour for this experiment is presented
in Figures 5 and 6.

Prop. BGM Prop. (α = 1)
Mean Std. Mean Std. Mean Std.

70% 6.17 2.47 7.22 2.80 8.65 3.09
80% 5.39 2.29 7.25 2.80 8.10 3.07
90% 3.89 1.95 5.67 2.80 6.19 2.80

Table 1. Best results from both algorithms. In
all cases when structural information is con-
sidered, the proposed method outperforms
the BGM algorithm.

From this experiment the following conclusions may be
drawn. First, the inclusion of structural information im-
proves the results (between 40 and 70%). If only Shape
Context is used (letting α = 1) then the BGM performance
is slightly better, thus structural information is necessary in
order to get a better performance. Second, shape informa-
tion describes the local configuration of points and is cru-
cial to decrease the matching errors. Finally, there exists an
optimum α = 0.4 which is the same for the three tested sce-
narios, and the error rate is stable for α in [0.2, 0.6]. These
facts corroborate the method robustness.

6.2. Experiment 2

In this experiment, in order to increase the nonrigid
transformations between points, gaussian noise was added
to the points coordinates from both images according to
three different standard deviations. Each image from the
pair is subjected to a perturbation similar to the one illus-
trated in Figure 9. For each standard deviation, 100 sample
pairs were generated.

The mean and standard deviation corresponding to the
best results obtained from both algorithms on the pair in
Figure 4 are illustrated in Table 2, and the complete be-
haviour for this experiment is presented in Figures 7 and 8.

As illustrated in Table 2, the proposed algorithm outper-
forms BGM in all cases when strutural information is con-



Figure 5. Experiment 1: The amount of errors
obtained by the proposed algorithm for dif-
ferent sampling percentages (70, 80 and 90%)
and for different values of α.

Figure 6. Experiment 1: The amount of errors
obtained by BGM for different sampling per-
centages (70, 80 and 90%) and for different
values of ε.



Figure 7. Experiment 2: The amount of errors
obtained by the proposed algorithm for differ-
ent noise variance on the points coordinates
and for different values of α.

Figure 8. Experiment 2: The amount of errors
obtained by BGM for different noise variance
on the points coordinates and for different
values of ε.



Figure 9. The original points (on top) and the
corresponding points after the addition of a
gaussian noise with σ = 7 (on bottom).

sidered. This corroborates to the robustness of the structural
information.

7. Conclusions
In this work we presented a method for structural match-

ing of 2D electrophoresis gels using graph models. The pro-
posed algorithm is based on a greedy algorithm which mini-
mizes a given energy to obtain a matching. The energy func-
tion represents a distance for spot comparison, which takes
into account structural and shape information.

The proposed algorithm was tested against the Bipartite
Graph Matching (BGM) [4] algorithm using a real pair ob-
tained from [1]. The test was divided into two experiments.
In the first one, only shape information is affected by artifi-
cially removing some spots from both images, thus increas-
ing the number of possible outliers. The second experiment
tested the robustness of the structural information by intro-
ducing random perturbations on the points coordinates, thus
increasing the nonrigid transformations between points.

Prop. BGM Prop. (α = 1)
Mean Std. Mean Std. Mean Std.

σ = 1 2.27 1.15 4.98 1.37 5.8 2.28
σ = 3 5.28 2.19 7.62 1.96 7.95 2.78
σ = 7 9.87 2.78 10.28 2.35 11.17 2.80

Table 2. Best results from both algorithms.
Even in the presence of a perturbation in the
structural information, the proposed method
needs this information to outperform BGM.

The method has been successfully applied to different
real image pairs, including higher complexity pairs, which
means larger number of spots and larger deformation be-
tween images. As expected, the error rate increases for more
complex pairs (see [2] for more results).

The results of both experiments confirmed the need and
the robustness of structural information in order to obtain
better matchings. When comparing the best results from the
proposed algorithm and BGM, the proposed method pre-
sented better results in all cases when structural informa-
tion is considered.

Finally, the simplicity of the new proposed method al-
lows extremely fast implementations, and it can be easily
integrated in a graphical interface for user interaction.
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