
Multidimensional visualization to support analysis of image collections

Danilo M. Eler Marcel Y. Nakazaki Fernando V. Paulovich DaviP. Santos
M. Cristina F. Oliveira Jõao E. S. Batista Neto
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Abstract

Multidimensional Visualization techniques are invalu-
able tools for analysis of structured and unstructured data
with variable dimensionality. This paper introduces a
methodology and a software tool calledPEx-Image– Pro-
jection Explorer for Imagefor analysis and exploration
of image collections employing visualizations. The visual
mappings proposed here are similarity-based multidimen-
sional projections and point placements, which layout the
data on a plane for visual exploration. The proposed
approach supports various image analysis tasks such as
feature selection and classification, improving data explo-
ration capabilities. We also illustrate how it can be success-
fully employed in simultaneous analysis of different data
types, such as text and images, offering a common visual
representation for data expressed in different modalities.

1. Introduction

Image analysis and image processing applications typ-
ically compute feature vectors from images, so that they
can be compared based on content (dis)similarity. Pattern
recognition algorithms typically inspect them-dimensional
space defined by the extracted features. Techniques such as
Neural networks, Support Vector Machines and Clustering
are widely employed for image comparison and classifica-
tion. A common difficulty is the large number of features,
which define a high-dimensional space that strongly affects
performance of classification and clustering. Handling this
problem typically requires dimension reduction and feature
selection techniques. Reduction impacts the behavior of
classification algorithms, which must be tuned for optimal
performance on data sets almost on an individual basis.

Multidimensional Projections are commonly applied

to generate graphical representations of multidimensional
data. They work by projecting data originally defined in
anm-dimensional space into ap-dimensional space where
p << m (typically p = 2, 3). Techniques vary in their ap-
proaches, but a common goal is that data representation in
the projected space should preserve relevant data relation-
ships defined in the original space.

We employ projection techniques to support unsuper-
vised classifications of image data sets aimed at interactive
user-directed exploratory analysis. Such techniques have
been successfully employed before inProjection Explorer
(PEx) [17] to map document sets [16, 5] based on their con-
tent similarity. We adapt and extend this underlying frame-
work to support user-driven exploration of image data and
associated textual information, now calledProjection Ex-
plorer for Image(PEx-Image). We illustrate how integra-
tion of both input types into the same exploratory environ-
ment enhances the capability of the visualizations in finding
new interesting cases within the data.

We also investigate how multidimensional projections
can benefit from an embedded feature selection scheme and
how a classifier can aid in the visual data exploration pro-
cess. The former yields projections with more uniform
groups and the latter enhances data exploration potentiali-
ties by adding information to that already revealed by mul-
tidimensional projections alone.

Textual data sets are often expressed as high-dimensional
vector spaces for classification, retrieval and visualization
tasks. Feature vectors are also extracted from images to
define anm-dimensional vector image space. Such high-
dimensional data points may be input to projection tech-
niques, which generate a representation of the points inR2

that can be displayed and interacted with. Figure 1 illus-
trates a projection from an image data set generated with
PEx-Image, employing a point-placement technique called
Neighbor-Joining (NJ) similarity tree [5]. This particular
data set contains 6 different classes of medical images, each



described by 45 samples. If a good similarity metric is em-
ployed the NJ-tree effectively separates groups of similar
images (or classes) in branches, as observed in Figure 1.
It is therefore a useful representation, e.g., to validate the
metric itself for further processing of comparable data sets.

Figure 1. 2D projection of a medical image
data set and details. Layout generated with
the Neighbor-Joining technique.

Views generated by different techniques from the same
data, or from distinct but somehow related data sets, may
be coordinated in the exploration tool. We illustrate how
such coordinated multiple views (CMV) benefit analysis of
image data sets, favoring identification of relevant associa-
tions.

2 Related Work

Organizing large image collections for effective auto-
mated search and retrieval is a major research issue in Com-
puter Vision and Computer Databases. A recent trend inves-
tigates how visualization and mining techniques may as-
sist user exploration of such databases, where the quest is
for unexpected albeit potentially useful information. Chen
et al. [3], for example, employ visualization techniques
to compare images based on three distinct feature extrac-
tion schemes that use color, layout and texture information,
respectively. Images are classified by a system that em-
ploys associative networks obtained with Pathfinder Net-
work Scaling (PFnets) [21]. Nodes in the networks are
connected to reflect proximity and similarity between im-
age pairs, preserving only the most important connections.

Unlike Chen et al., who employ an unsupervised ap-
proach to establish image similarities, the method by Fan
et al. [7] classifies images based on automatic annotations.
An ontology is constructed from manual annotations asso-
ciated to some images. Objects are extracted from the im-
ages and receive annotations that allow assigning an image

to a specific domain. New images added to the database
are classified based on the ontology previously constructed.
For that, the main objects in the image are automatically ex-
tracted and their features computed. Resulting features are
compared with those from the ontology, and a classification
is performed with Support Vector Machines. A visual rep-
resentation is created using Principal Component Analysis
and a hyperbolic tree, which groups images related to simi-
lar concepts.

Several applications that employ visual representations
of image data to support user exploration employ dimen-
sionality reduction to generate two-dimensional displays.
Dimension reduction can be applied to the image as a
whole [19, 22] or to image feature vectors [14]. Simi-
lar to the work proposed here, Yang [24] shows a classi-
fication of similar images by projecting the data from a
high-dimensional space to a lower-dimensional one. He
describes experiments with data sets containing the same
underlying image with variations in shape, brightness and
orientation. No features are extracted, rather all pixels are
employed to describe the multidimensional image object.

Our work contrasts with previous ones in that it offers a
visual framework to support the overall process of analyz-
ing image data sets, from simple exploration tasks to eval-
uating image manipulation and mining algorithms. More-
over, it relies on effective visual maps capable of unify-
ing different data types into a common visualization frame-
work, an integration that favors identification of associa-
tions between different views of the same data or of dif-
ferent data types related to the same phenomenon. Also, to
the best of our knowledge, there are currently no attempts
to explore the benefits of combining multidimensional pro-
jections, automatic feature selection and classification into
a unified framework.

3 Background

Image analysis and visualization techniques related to
this work are now briefly reviewed.

3.1 Multidimensional Point Placement
and Projections

Distance-based projections strive to preserve, in the pro-
jected space, the distance relationships established by the
similarity measurements in the original space. A good pro-
jection groups highly related ‘points’ close together (prox-
imity measured by their Euclidean distance inR2). Figure 2
presents a sample projection of the same data set depicted
in Figure 1, generated with thePEx-Imagetool described in
Section 4.PEx-Imageimplements recent projection tech-
niques known to perform well on multidimensional data



[16, 13] and also many classical projection and dimension
reduction techniques.

(a) (b)

Figure 2. Alternative projection of the medical
image data shown in Figure 1. Colors indi-
cate image classes. a) IDMAP projection [13];
b) LSP projection [16].

Similarity trees (Figure 1), on the other hand, rely on
data object similarity to derive a hierarchical organization.
Particularly, the NJ-tree technique employs the same ra-
tionale adopted by algorithms that reconstruct phylogenic
trees, replacing the concept of ancestry by a virtual object
node with combined dissimilarity. The tree is created based
on the property that similar nodes – that share common
properties – are assigned to the same branch, in a bottom-
up strategy. Therefore, a node is assigned as an ancestor
of another one when they share similar content. The tree is
un-rooted and its reduced depth yields rational use of screen
space, and a useful hierarchical interpretation that reveals
both local and global similarity relationships.

3.2 Feature Selection by Salience Mea-
sures

Feature selection is generally employed to reduce mea-
sure acquisition costs and improve precision of image clas-
sification systems [10]. We employ a feature selection
scheme based on salience measures originally proposed by
Garson [8] and further extended by Santos [20].

The fact that neural networks make no prior assump-
tion on the nature of the data distribution has been ex-
plored by many researchers to avoid the restrictive con-
ditions of statistical methods [2]. Garson [8] proposed
a salience measure that indicates the importance of each
MLP (Multi-Layer Perceptron) input node. His heuristic
approach, which is an estimate based on the cost of all con-
nection paths from the input to the output layer, was shown
to be computationally viable when compared with tradi-
tional selection methods [15].

First of all, a normalization factorNh is computed for
eachh hidden neuron. It is the sum of the absolute values
of the neuron weightswi,h (indexi indicates the input node
number):Nh =

∑
i |wi,h|

Each possible path (where variableo stands for output
neurons) returns a valuew∗i,h,o based onNh and output

weights:w∗i,h,o =
|wi,h||wh,o|

Nh

Finally, salienceSi,o of input i, with respect to output
neurono, is given by:Si,o =

∑
h w∗i,h,o

The salience measure enables to eliminate a feature with
no knowledge on its related contribution to classification
rate. Hence, rather than training the neural network several
times to evaluate each feature contribution, a single train-
ing suffices to rank the relevance of features based on their
salience values. For improved accuracy intermediate train-
ings can be performed until the end of selection process.

Salience is usually applied to reduce selection complex-
ity. For instance, for each feature removed, a training could
be performed; forn features, the complexity would beO(n)
(more specificallyO(n − m), because the algorithm ends
when anm-sized subset is reached). This linear complex-
ity algorithm is preferable to an exhaustive search, although
there is no guarantee of optimality.

We adopt in our studies a feature selection by salience
that overcomes two major drawbacks of Garson’s original
proposal. First, the approach is extended to handle an n-
class problem, as opposed to a 2-class problem only (single
MLP output). Second, when faced with irregular features
(uneven levels of mean values and/or within different nu-
merical ranges), the MLP tends to provide higher weights
for features with lower mean values. This has a direct influ-
ence on salience measures for they are computed over such
weights. The normalization scheme based oncenteringand
scalingtechniques [20] overcomes this problem, so that the
salience measure computed actually reflects the discrimi-
nant power of each feature.

Another advantage of the feature selection process by
salience with MLP neural nets is that classification can be
attained at virtually no extra computational effort, as the
weights computed during selection can be employed during
classification without another training process.

4 PEx-Image: A Tool for Exploring Image
Data Sets

PEx-Imagetailors and extends previous projection tech-
niques to handle image databases, offering several position-
ing techniques that emphasize image content similarity plus
complementary functionalities to assist focused data explo-
ration.

Input data forPEx-Imagemay be a set of images, from
which characteristics may be extracted and combined into
image feature vectors. Each feature vector represents an im-
age as anm-dimensional point, wherem is the feature vec-
tor size. Alternatively,PEx-Imagemay take as input any set
of m-dimensional points – e.g., feature vectors previously
extracted, possibly by another tool, or even other data types



represented as vectors, such as textual or record data. A
user may then choose the type of projection to generate a
2-D layout, as discussed in Section 3.1. Various object sim-
ilarity metrics are supported, such as Euclidean Distance,
Cosine Similarity and City Block.

Once the high-dimensional data points (images, in this
case) are projected they are displayed on the screen using
proper graphical marks. Typical marks are circles, which
may be connected with lines to represent relationships be-
tween data objects, such as similarity, proximity or a trian-
gulation of some type. In situations where the data set has
one or more associated scalar fields – e.g., an assigned class
or type – scalar values can be mapped to circle color or size.
Alternatively, miniatures of the images themselves may be
employed as graphical markers, as illustrated in Figure 1.

As long as the distance metric employed is effective in
capturing content similarity, the resulting layout provides
a visual map that approximates and groups similar images,
providing a powerful starting point for further exploring the
data set. Several functionalities assist users in interaction
tasks (illustrated in the video provided). The analyst may
resort to capabilities such as zooming, moving points to re-
solve overlapping, moving points automatically according
to their connections, highlighting the nearest neighbors of a
selected image (Figure 3(a)) and recovering the correspond
images (Figure 3(b)), or select a region and recover the cor-
responding images.

(a) (b)

Figure 3. Visualizing the nearest-neighbors
of a user-selected image: (a) Selected image
and its neighbors (highlighted circles); and
(b) Image and its neighbors (most similar im-
ages).

PEx-Imagealso supports coordinated interaction with
multiple views of the image data – e.g., distinct layouts gen-
erated by multiple projection techniques – as well as with
views of related data, for example, textual information as-
sociated to images. Coordination implies that user selection
of an image or a group of images in a view highlights the
corresponding images (or their related objects) in the other
coordinated views. Coordination features are illustratedin
the following section.

5 Results

The following case studies employ five distinct families
of image features, four of which (a–c and e) conveying tex-
tural information: a) Fourier Descriptors from image his-
togram and Energy computed from 2D image Fourier de-
scriptors [9]; b) a set of 16 Gabor Features, taken from 4
frequency levels (0.02-0.3) and 4 distinct orientations [11];
c) 72 co-ocurrence matrices features computed from 6 Har-
alick’s functions over 12 combinations of distances and di-
rections [23]; d) mean intensity and standard deviation com-
puted over the entire image; e) a set of 1,024 wavelet fea-
tures [6]. The combination of features (a) to (d) is referred
to asgroup onefeatures.

The first study describes how projections can help as-
sessing the efficiency of a particular feature set in grouping
similar images, for a particular data set. Figure 4 illustrates
four distinct NJ-tree projections (with Euclidean distance)
of a set of 512 MRI medical images distributed into 12
classes, each indicated by a different color. Projections (a),
(b), (c) and (d), respectively show the results for: 16 Gabor
features; 20 Fourier descriptors from the image histogram;
6 Energy Fourier descriptors, mean and standard deviation;
72 Co-ocurrence matrices features; all features combined.

View coordination is an important aid to compare differ-
ent feature combinations and here it helps identifying which
feature set shows the best grouping results. By coordinat-
ing the four different data views (node color indicates im-
age class), and selecting in the view shown in Figure 4(d)
those images that do not belong to head images (dark blue),
one observes the corresponding images highlighted in the
four projections. Inspection reveals that the fourth choice
of features (Figure 4(d)) is the most effective in grouping
the different image classes.

The same data set was employed in a second experiment
which evaluates the grouping capabilities of different dis-
tance metrics under NJ-tree projections. Figures 5(a), 5(b)
and 5(c) show, respectively, the projections obtained with
the Euclidean, Cosine Similarity and the City Block dis-
tances. Group onefeatures were employed in all cases.
Projections in Figure 5 show that the NJ-tree successfully
captures the groups of similar images. Images belonging to
a given class have been either mapped into branches close
to each other (in most of the cases) or into a single branch
(in some cases). This behavior is reinforced by the projec-
tion in Figure 6, which shows the same NJ-tree illustrated
in Figure 5(b), now displaying miniature images as graph-
ical markers. Closer inspection of the projections reveals
that better class separation is achieved with the Euclidean
distance (Figure 5(a)) and Cosine Similarity (Figure 5(b)).

The next study uses a public X-ray image
data set called ImageCLEF 2006 (available at
http://ir.shef.ac.uk/imageclef/2006/). Figure 7 shows



(a) (b)

(c) (d)

Figure 4. Projections of the medical image
data set with Euclidean distance for differ-
ent feature sets. (a) Gabor; (b) Fourier de-
scriptors, mean and standard deviation; (c)
Co-occurrence matrices and (d) all features
combined ( group one).

two NJ-trees with 1,000 test samples from such data set.
Figure 7(a) shows the NJ-tree obtained from the same
feature set employed in the projection shown in Figure
4(d). On the other hand, Figure 7(b) shows the NJ-tree for
the 1,024 wavelet features. Coordinated examination of
both views, by selecting and highlighting image clusters,
reveals that the wavelet features outperform the other set.

In real life applications class information is usually not
available for testing purposes, and classifiers can aid in the
exploration process. In the ImageCLEF training data, we
sought for classes with no less than 50 and no more than
200 samples. As a result, a total of 3,345 image samples
(within 35 distinct classes) have been selected as a training
set, from which both thewaveletandgroup onefeature sets
were computed. The MLP-based classification process was
then carried out on both feature sets. The primary purpose
here was not to reduce the number of features but, instead,
classify all samples and analyze how this could contribute
to a projection-based exploration of the test data. Figure
8 shows 3 NJ-tree projections for a set of 537 test images
which includes the same classes found in the training data
set.

(a) (b)

(c)

Figure 5. NJ-tree projections of the medical
image data set for group onefeatures and 3
different distance metrics: (a) Euclidean; (b)
Cosine Similarity; and (c) City Block.

The MLP-based classifier derives a classification hy-
pothesis, and combining this information and the NJ-tree
projection can enhance the user-driven exploration task.
Figure 8(a) shows an NJ-tree colored by the given image
classes previously labeled by physicians, whereas Figures
8(b) and 8(c) show NJ-trees whose node colors indicate the
class assigned by the classifier to each test sample. The for-
mer was obtained with thegroup onefeature set, whereas
the latter employed thewaveletfeatures. The neural net-
work training was interrupted (converged) with a 63.67%
error in thegroup onefeatures training, and with a 23.28%
error in the wavelet features training – the latter produced
the best results.

The next case study illustrates how the MLP-based fea-
ture selection can contribute to the exploration process. Fig-
ure 9 shows a comparison between two NJ-trees computed
from the wavelet feature vectors with different dimensions,
i.e., distinct feature spaces. Figure 9(a) shows an NJ-tree
created with the complete (1024) feature set, whereas an
NJ-tree with the best 37 wavelet features is shown in Figure
9(b) – this subset includes only those features with salience
values greater than0.5. A feature ranking was generated
based on a neural network training with an error rate equal



Figure 6. NJ-tree projection of Figure 5(b),
with miniature images instead.

29.62%. Coordinated explorations of the projections reveal
that the smaller feature set (Figure 9(b)) actually yields bet-
ter groupings than the complete one (Figure 9(a)), result-
ing in similar images placed in the same or in nearby tree
branches.

Visual analysis strategies as presented here are also use-
ful to explore biological data sets such as protein sequences.
Such sequences may be expressed through the construction
of particularly elaborated images. Protein structures canbe
represented as a 2D matrix, where element[i, j] carries in-
formation about the interactions of residuesi and j [18].
Using a tool such asPROTMAP2D [12] one can generate 2D
maps from such information, namedcontact maps, and ob-
tain images that carry relevant information about the genetic
sequences. Figure 11 shows four sample contact maps from
a protein sequence data set.

In the following study we use sequences from the RSCB
Protein Data Bank(www.rcsb.org/pdb), which contains in-
formation on thousands of sequences and their respective
structures. We started with 11 sequences with different en-
zyme classification, randomly selected from RSCB-PDB.
These sequences were compared, usingBLAST [1], against
the PDB repository containing 63,762 sequences. By se-
lecting the most similar sequences to each source sequence,
using a threshold ofe−100 for the e-value attribute, we ob-
tained 138 sequences belonging to 11 different classes.

(a) (b)

Figure 7. NJ-tree projections with Euclidean
distance metric for the X-ray ImageCLEF data
set. (a) group onefeatures; (b) wavelet fea-
tures.

We then generated the contact maps of those sequences,
and independently projected the resulting images and the
amino-acid sequences themselves (see Figure 10). Coordi-
nated exploration of the views enables comparing the infor-
mation that can be gathered from each visualization. Figure
10(a) shows the NJ-tree built from the contact map images,
using the same procedure employed for the other image
sets. A total of 28 features have been used: 26 Fourier de-
scriptors from image histogram and whole image, mean and
stardard deviation. Figure 10(b) is the NJ-tree built from
the sequences, using as similarity measurement an approach
known as Normalized Compression Distance - NCD [4],
which is computed directly from the sequences. Similarity
is computed by approximating the Kolmogorov complex-
ity of the data strings using compression algorithms. We
have used gzip and bzip2 compressions, with the equivalent
results. Node color in the projection indicates the original
enzyme class of the sequence.

One observes that both trees have extremely similar
structures. Same sequences are placed next to each other
on the projections from either input data. The highlighted
nodes, all belonging to the same class, appear shifted from
one projection to another but still remain in the same neigh-
borhood. A few groups are circled and labeled in the pic-
ture, to stress their positioning on the visual map. Both trees
yield very similar overall interpretations regarding thisdata
set, suggesting that either means of expression could lead
to similar organization of the data based on similarity. By
focusing on individual groups, one observes that the con-
tact maps disclose information that differs from the one re-
vealed by the similarity obtained from the sequences them-
selves, as reflected by the changes in branch topology. This
is bound to be so, since contact maps do contain informa-



(a)

(b) (c)

Figure 8. NJ-tree exploration (with 1,024
wavelet features and cosine similarity) aided
by an MLP classifier (a) colors from image
classes. Colors assigned by classifier: (b)
group onefeatures and (c) 1,024 wavelet fea-
tures.

tion that is not directly expressed by sequence similarity.
This example highlights the advantages of having a similar
framework to examine information of different natures re-
garding the same basic data. Similarities and differences in
information content can be located and explored immedi-
ately.

A discrepancy immediately noticeable is observed in
Figure 10(a), where two ‘green’ nodes (next to group D)
seem to be misplaced, well away from their original class
(group A). In the map built from the sequences, they are
placed in the same branch as the remaining nodes A. Close
examination (see Figure 11) reveals that, although the se-
quences are similar, the contact maps of the two isolated
nodes are actually quite different from the others, reveal-
ing particularities of the residual information for those se-
quences. Such information would have been very difficult
to find without this type of visualization.

6 Conclusions

We introducedPEx-Image, a set of tools and a novel ap-
proach to map an image data set onto a two-dimensional

(a) (b)

Figure 9. NJ-tree projection with cosine simi-
larity. Feature selection for saliences larger
than 0.5. (a) 1,024 wavelet features; (b) 37
wavelet features.

(a) (b)

Figure 10. NJ-trees of 138 protein sequences
in 11 enzyme classes. (a) Contact Map
images; and (b) Protein sequences, using
NCD as similarity measurement. Color maps
class, and areas labeled correspond to the
same sequences in both maps. Highlighted
nodes belong to a particular class.

space, and demonstrated how they make data analysis and
exploration more effective. Both feature selection strategies
and classification algorithms can be evaluated using the vi-
sual framework presented here. The visualizations provided
can facilitate and accelerate comprehension of results from
image analysis algorithms. These algorithms, in turn, im-
prove the process of visual mapping and mining.

Since the same visual analysis framework can be applied
to multiple distinct data sources, e.g., images and texts, as
illustrated in the biological data set example, the approach
supports comparing and associating different types of in-
formation on the same phenomenon. It enables comple-
menting information through coordination of multiple vi-
sual maps, in order to enhance analysis tasks.
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