
Imesh: An Image Based Quality Mesh Generation Technique

Alex J. Cuadros-Vargas, Luis Gustavo Nonato, Rosane Minghim and Tiago Etiene
Instituto de Ciências Matemáticas e de Computação
CP 668, São Carlos 13560-970, São Paulo, Brazil

{alexj, gnonato, rminghim}@icmc.usp.br, tiago@lcad.icmc.usp.br

Abstract

Generating triangular meshes from images is a task im-
portant to many applications. Usually, techniques that can
do that either take as starting point a segmented image
or generate a mesh without distinguishing different struc-
tures contained in the image. In both cases the results can
be satisfactory for a number of applications, but the pre-
segmentation and the absence of well defined structures
imply in difficulties using the resulting mesh for simula-
tions. Furthermore, guarantee of good quality meshes is
also a common problem in previous results. In this work we
present a new technique for mesh generation that handles
these problems well. First, it eliminates the need for pre-
processing by building the segmentation into the mesh gen-
eration process. Second, the mesh generation process takes
into acount the quality of the mesh elements, producing as
result meshes of better quality than previous techniques.

1 Introduction

Numerical simulation in domains defined from images
has stimulated the technological development in many
branches of science. Typical examples of this kind of ap-
plication are blood flow simulation, elastic deformation of
organic structures, and studies of structure cracks and their
propagation. A main drawback in this context is to gener-
ate a mesh that fits the structures of interest contained in the
images while being adequate for numerical simulation.

Opposite to the classical mesh generation problem [1],
little has been achieved towards automating the process of
generating a mesh directly from image data. Most algo-
rithms described in the literature strongly rely on exten-
sive pre-processing steps. A typical approach consists in
segmenting regions of interest from the images, using the
boundaries of such regions as input to a mesh generator [4].
Although largely employed, such an approach demands
user intervention and specific segmentation softwares in or-
der to obtain well defined models.

Recently, some techniques that act directly on images
have been presented [10, 18, 19], but these techniques are
neither able to distinguish different structures in the im-
age, nor to ensure meshes of good quality. The identifi-
cation of distinct structures in the image is essencial in ap-
plications such as multi-fluid flows [16] and fluid-structure
interaction [3], since these applications take into account
the interface among regions to define interfacial strengths.
Additionally, good quality meshes are primordial for accu-
rate and efficient numerical solutions of natural phenomena
modeled by partial differential equations. Therefore, in or-
der to be effective, any mesh generator dedicated to numer-
ical applications in domains defined from images must be
concerned with both aspects discussed here.

In this work we present a novel algorithm, named Imesh,
which can automatically generate a mesh from a given
image while identifying different regions and maintaining
good quality of the triangular elements. The regions are
identified by building a segmentation strategy into the mesh
generation process. In fact, this segmentation first guides
an initial refinement step that aims at tracking the bound-
aries of the regions contained in the image. Then, it groups
such regions by employing a region growing strategy. The
quality of the mesh is obtained by adapting Ruppert’s algo-
rithm [13] to work in the “segmented” mesh. Therefore, the
proposed algorithm assembles the two aspects mentioned
above, namely, the automatic generation of a mesh that dis-
tinguishes different structures in the image and the genera-
tion of good quality mesh elements.

Section 2 gives an overview of related work on image
based mesh generation. Basic definitions necessary to a bet-
ter understanding of Imeshare given in Section 3. Imeshis
detailed in Section 4. Section 5 shows the results obtained
with our approach as well as some numerical simulations
carried out from the meshes produced by our method. Con-
clusions and discussion of future work are given in Sec-
tion 6.

2 Related Work

The techniques devoted to generate meshes from images
either aim at building meshes to represent images or are
concerned with numerical simulation. In the following, we
present a brief description of work related with both ap-
proaches.

The literature has presented a large set of techniques to
generate meshes for image representation (such techniques
are also called mesh modeling). In general, these techniques
intend to build a mesh that minimizes an error measure be-
tween the original image and the approximate image gen-
erated by interpolation based on pixel values in the vertices
of the mesh. Garcia et al. [7], for example, have presented
an algorithm that controls the maximum root-mean-square
error (RMS) by choosing the vertices of the mesh from a
curvature image, that is, more vertices are placed in areas
with high curvatures. The mesh model is built by generat-
ing the Delaunay triangulation [6] from the chosen vertices.
Regions with high RMS error are resampled and the De-
launay triangulation updated. Garcia’s method is a typical
example of an adaptive approach, which is characterized by
begining with an initial mesh that is iteratively refined in
order to reduce the interpolation error. Many algorithms
to represent images by meshes are based on adaptive ap-
proaches [11, 8, 9]. Alternatively, some techniques have
adopted an opposite strategy, i.e., a fine mesh is succes-
sively coarsened until the approximation error reaches a tol-
erance [5]. Mixed approaches that combine refinement and
coarsening [12] as well as optimization for re-positioning
the vertices in minimum error places have also been devel-
oped [17]. Still envisioning mesh modeling, Yang et al. [18]
proposed a one pass method that makes use of zero-crossing
jointly with an error diffusion algorithm to choose a set of
vertices from which the Delaunay triangulation is built. Be-
sides reducing the approximation error, the authors argue
that this strategy produces a better quality mesh.

Image based mesh generation for numerical simula-
tion, in general, comprises two main steps, namely, pre-
processing and mesh generation itself. The pre-processing
step aims at filtering and segmenting the image in order
to detect the regions of interest, which are “meshed” in
the mesh generation step. Cebral and Lohner [4] for ex-
ample, binarize the original image in order to extract well
defined contours from which a mesh is generated. Other
approaches that also employ a pre-processing strategy are
those by by Zhang et al. [19] and Berti [2]. In both algo-
rithms the mesh is built by defining, an implicit function
that guides an space partitioning strategy based on quadtree.
They also add a post-processing step to improve the qual-
ity of mesh elements. A different approach has been pre-
sented by Hale [10]. Hale’s algorithm makes use of a pre-
processing step to reduce noise and highlight sharp features.

Following that, a potential energy function is employed to
align a lattice of points with the image features. The mesh is
finally generated by Delaunay triangulation from the lattice
points. The goal of this strategy is that of representing im-
ages and thus distinct regions are not individually identified,
imparing its use in simulation applications.

The method proposed in this work differs from the tech-
niques described above in two main aspects: the segmenta-
tion strategy, commonly employed as a pre-processing step,
is built in the mesh generation process and a theoretically
guaranted mesh is produced. The fundamental difference
between this approach and pre-processed segmentation is
that the regions are defined based on geometric properties
of the mesh (such as lenghts and areas) together with image
attributes, providing additional information to support the
decision process involved in segmentation. Furthermore,
the algorithm can distinguish different structures contained
in the image, producing an independent mesh for each de-
tected structured.

3 Basic Concepts

In this section we present some basic definitions and ter-
minology used in the remaining of the text.

Let S be a set of points in R
2. A triangulation (mesh) of

S is a two-dimensional simplicial complex T whose vertices
are the points of S, and any k-simplex of T , k = 0,1, is con-
tained in at least a 2-simplex (triangle) of T . If the union of
all simplices in T makes up the convex hull of S and the cir-
cumcircle of each triangle in T does not contain any point of
S in its interior then T is called Delaunay triangulation [6].

A good quality mesh is a triangulation where all triangles
satisfy a measure of quality, as for example circumradius-
to-shortest edge ratio, i.e., the ratio between the radius of
the circumcircle and the length of the shortest edge is lim-
ited by a constant in all triangles of the mesh.

A planar graph is a graph G with vertices in R
2 where

each edge is a straight-line segment with ends in G and if
e1 and e2 are two edges of G, e1 ∩ e2 is either empty or a
vertex of G. Given a planar graph G, a mesh constrained
by G is a triangulation M where each vertex of G is in M
and if e is an edge in G then |e| = |e1 ∪ e2 ∪·· ·∪ ek|, where
ei ∈ M, i = 1, . . . ,k are edges of M and | · | represents the
underling space, i.e., each edge of G can appear subdivided
as a set of edges in M.

Let S be a set of points and M a mesh (triangulation) of S,
if M = M1∪M2∪·· ·∪Mk, where each Mi is a triangulation
and Mi ∩Mj, i �= j is either empty or a planar graph then
{M1,M2, · · · ,Mk} is said a k-partitioning of M in submeshes
Mi, i = 1, . . . ,k.

An m×n image is a function I : [0, . . . ,m]× [0, . . . ,n] →
R

+ that assigns to each point p∈ [0, . . . ,m]× [0, . . . ,n]⊂Z
2

a non-negative scalar I(p). The pair (p, I(p)) is called pixel.

4 The Imesh Method

In this section, we present a description of the pro-
posed algorithm Imesh, which consists in three main steps:
initialization, partitioning, and mesh improvement. The
first step aims at generating an initial mesh that fits im-
age features. Partitioning is concerned with the seg-
mentation. The final step refines the mesh in order
to get a quality mesh. A detailed description of each
step is presented in the following text. The color fig-
ures presented in the remaining of the paper can be also
viewed at: http://www.lcad.icmc.usp.br/˜alex/imesh/imesh-
sibgrapi-05/

4.1 Initialization

The initialization step starts by creating a Delaunay tri-
angulation M from points evenly distributed (based on dis-
tance between them) on the border of the input image. Over
each triangle ti ∈ M the image I can be approximated by:

Î(p) =
3

∑
k=1

I(pk)bi,k(p), for every point p ∈ |ti| (1)

where bi,k(p) is the interpolation basis function associated
with the kth vertex pk, k = 1,2,3 of ti.

If max{|I(p)− Î(p)|}, for every point p in |ti|, is higher
than a user defined scalar denoted by min error then the
image I is said not well approximated in ti. In order to im-
prove the approximation, a new point pn in |ti| is inserted in
the Delaunay triangulation.

The strategy adopted to define the new point pn is one of
the inovative aspects of our approach. Different from other
adaptive approaches that choose the new point by maximiz-
ing either {|I(p)− Î(p)|} or an edge detection operator ap-
plied over all points in |ti|, our scheme selects pn by scan-
ning only a few lines in the interior of the triangle, thus
avoiding to traverse all pixels of |ti|.

Let h1,h2,h3, and c be the three altitudes and the circum-
center of ti, respectively (see Figure 1). Consider the set of
points

Pti = {p ∈ h j, j = 1,2,3 | E (p) ≥ min border}
where E is an edge detection operator and min border is an
user defined scalar. Therefore, Pti is the set of pixels on the
lines h j where the operator E exceeds a thresholding. The
new point pn is choosen from the points in Pti so as to mini-
mize ‖c− p‖, p ∈ Pti , i.e., pn is the point of Pti closer to the
circumcenter of ti. In Figure 1 the darker square illustrates
the point pn choosen by our scheme.

The adaptive scheme finishes when either the image is
well approximated in all triangles of M or E (p) is lower
than min border in all triangles that must be refined. Both

Figure 1. Choosing a new vertex to be in-
serted in the triangulation.

parameters min error and min border affect the triangle
density. Figure 2 illustrates this behavior. In Figure 2a) and
b) the parameter min error is set with a small value and with
a high value respectively and min border is fixed in such a
way that the refinement finishes due to min error. Note that
in Figure 2a), due to noise, the background is also refined.
In figure 2c) and d) the parameter min error is fixed close
to zero and min border receives small and high values re-
spectively, so the refinement is stopped by min border.

(a) (b)

(c) (d)

Figure 2. Handling triangle densities

From Figure 2 we can see that small values for min error
and min border tend to generate denser meshes while
courser meshes are produced with high values.

Our adaptive approach presents some desirable proper-
ties not found in other traditional schemes: by inserting new

points closer to circumcenters we avoid the acumulation of
points around already exisisting vetices. Furthermore, as we
will see later (subsection 4.3), such strategy tends to gener-
ate triangles with a better quality, thus improving the inter-
polated image Î (see Yang [18] for details in how the quality
of triangles affects the interpolated image).

4.2 Partitioning

The partitioning step aims at generating a k-partitioning
of the mesh produced in the initialization step, where k is
previously specified. Such partitioning is carried out by
a region growing approach, which is accomplished as de-
scribed as follows.

Let H (T) be a mapping that associates an array of char-
acteristics to a triangulation. H (T) may be an array of
texture features, histogram of the pixels in |T |, or just the
average of I in |T |.

The partitioning is started by arbitrarily selecting a tri-
angle ti ∈ M, computing H (ti) and initializing a first sub-
mesh M1 with ti. For each triangle t j sharing an edge with
M1 we compute |H (M1)−H (t j)|H , where | · |H is a dis-
tance measure defined from H . If |H (M1)−H (t j)|H
is smaller than a user defined parameter min diff then t j is
added to M1. Therefore, M1 “grows” until there is no trian-
gle to be added. A new submesh M2 is then started with a
triangle not in M1 and the process is repeated. In the end,
when all triangles in M are in some submesh Mi, we have a
partitioning M = M1 ∪M2 ∪ ·· ·∪Mm. In order to keep sub-
meshes with the same characterist H grouped, we compute
|H (Mi) − H (Mj)|H , i, j = 1, . . . ,m; i �= j, merging the
submeshes whose distances | · |H are smaller than min diff,
resulting in a partition M = M1 ∪M2 ∪·· ·∪Ms, s ≤ m.

If s > k we must merge some submeshes in order to ob-
tain a k-partitioning. This final merge is carried out taking
into account the area of the submeshes and their number of
triangles. Adding the submeshes to a priority queue sorted
by those two criteria simultaneously, the smallest submesh
is merged with the “closest” submesh regarding the distance
| · |H . The process carries on until the number of submeshes
is k. Using the priority queue avoids sorting the submeshes
every time a merge is executed. The algorithms admits other
merging criteria but this has been the most effective in the
tests performed.

Figure 3 illustrates the three stages of the partitioning
step. In this example H is the average color of the submesh
and | · |H is the euclidean distance.

4.3 Mesh Improvement

This final step of the algorithm aims at refining the sub-
meshes in order to produce a triangulation whose triangles
respect a minimum angle criterion. A variant of Ruppert’s

(a) (b)

(c)

Figure 3. The three stages of the partitioning
step: (a) building the initial submeshes (258
submeshes); (b) Merging similar submeshes
(8 submeshes); (c) obtaining a k-partitioning
(k=3).

algorithm [13] is employed to achieve a good quality trian-
gulation.

Ruppert’s algorithm refines a Delaunay mesh by insert-
ing the circumcenters of “poor” quality triangles. The qual-
ity of the triangles is measured by the circumradius-to-
shortest edge ratio, i.e., the radius of the circumcircle di-
vided by the length of the shortest edge of the triangle.
It can be proven that the circumradius-to-shortest edge ra-
tio r/d of a triangle is related to its smallest angle α by
sinα = d/(2r). As the insertion of the circumcenters tends
to generate triangles with smaller circumradius, the small-
est angle of the new triangles tends to be bigger than the
old ones, thus improving the quality of the triangulation.
Ruppert’s algorithm inserts circumcenters until all triangles
satisfy a quality constraint, i.e., all triangles have the ratio
r/d limited by a constant.

The strategy to insert new vertices in Ruppert’s algo-
rithm is governed by two main rules thus described: let G be
a planar graph and M be a mesh whose vertices of G are ver-
tices of M. The first rule of Ruppert’s algorithm verifies, for
each edge e in G, if a vertex of M lies strictly inside of the
diametral circle (the smallest circle enclosing the edge) of e.
In the affirmative case, the edge e is split in two segments by
inserting a vertex at its midpoint. The process follows until
the diametral circles of the edges (or subdivided segments)

in G are empty. The second rule aims at inserting a vertex
at the circumcenter of each triangle whose circumradius-to-
shortest edge ratio is greater than a bound B. However, if
the new vertex lies inside of the diametral circle of some
segment (or subsegment) of G, then such a vertex is not in-
serted and the segment is split as in the first rule.

It can be shown that if B ≥√
2 then Ruppert’s algorithm

terminates; furthermore, if a circumcenter v is inserted as a
new vertex then v lies inside the planar graph [14] bounding
the mesh.

We generalize Ruppert’s algorithm, originally designed
for a single planar graph, to work on a k-partitioning. The
main problem in such a generalization in the fact that new
vertices inserted on the edges of the planar graphs bound-
ing submesh may eliminate other subsegments, damaging
the partitioning. We overcome this problem by “locking”
the segments of the planar graphs. Although the triangula-
tion may become non-Delaunay momentarily, it is not diffi-
cult to show that the Delaunay property will be recovered as
locked segments have also diametral circles not empty and
thus will be subdivided. As circumcenters are guaranteed to
lie inside the planar graphs, their insertion do not affect the
partitioning.

We can apply the mesh improvement strategy in all sub-
meshes or in a subset of submeshes. Figure 4 shows an ex-
ample of the refinement in a mesh with 2 and 3-partitioning,
respectivelly. In this figure the mesh improvement has not
been applied in the submesh that comprises the background
of the image. The B parameter has been set to ensure a min-
imal angle equal to 22o.

(a) (b)

Figure 4. Sample refinements. (a) 2-
partitioning. (b) 3-partitioning

Ruppert’s algorithm presents problems when que planar
graph bounding the initial mesh has small angles. Ruppert
proposes a simple solution for the problem [13], which sub-
divides the edges comprising small angles taking into ac-
count the local feature size of the vertices. Such an strategy
has been implemented in our code. Although simple, the
strategy adopted by Ruppert to deal with small angles is not
computationally efficient, increasing computational times.

5 Results

In this section we present examples of meshes produced
by the proposed algorithm. It is worth mentioning that the
images have not been pre-processed, i.e., they are input di-
rectly into the algorithm. Average color and euclidean dis-
tance have been used as measures of similatiry among sub-
meshes.

The two first examples (Figures 5 and 6) show the re-
sults of applying our algorithm in synthetic images. Notice
in Figure 5 that thin details, as the mustache and fur, have
been captured by the algorithm. Figure 6a) presents an im-
age with light effect from left to right, which, in general,
hinders segmentation processes. As it can be seen in Fig-
ure 6b), the algorithm successfully detects the structures,
partitioning the image in two submeshes.

(a) (b)

(c)

Figure 5. Tasmanian devil (TAS): (a) Original
image; (b) Interpolated image from the mesh;
(c) mesh wiht 4044 vertices. Parameters:
min border = 150, min error = 3, and k = 3.

Figure 7 shows the behavior of the algorithm in a medi-
cal image. In this example we set the algorithm to generate
a 3-partitioning, aiming at detecting the tumor on the right
side of the brain (figure 7a)). Notice in Figure 7b) that, even

(a) (b)

(c)

Figure 6. Bull: (a) Original image; (b) Inter-
polated image from the mesh; (c) mesh with
4674 vertices. Parameters: min border = 50,
min error = 9, and k = 2.

with a small number of vertices (2302), the algorithm has
detected the tumor while interpolating the image properly.

The computational times regarding the meshes presented
in figures 5,6, and 7 are shown in table 1. The code, imple-
mented in C++ and OpenGL, has been executed in a Xeon
2.8Ghz processor with 1Gb RAM. First column shows the
size of the original images. The other columns present
times, in seconds, of each step of the algorithm. It is worth
mentioning that we have not implemented any optimiza-
tion strategy for the mesh improvement step, justifying the
still high computational time of this step. As pointed out
by Shewchuk [15], optimization strategies, which include a
more efficient treatment for small angles, can improve con-
siderably the performance of the algorithm.

Images/steps Initialization Partitioning Mesh
Improvement

TAS 523×655 8.047 0.56 129.90
Bull 528×475 5.765 0.29 60.75
Brain 235×300 5.5 0.34 18.89

Table 1. Computational times (s)

We finish this section with an example of numerical sim-
ulation using a mesh generated by our algorithm. In fact, the
example shows an elastic model acting on the mesh, pro-
ducing thus a deformation on the image represented by the

(a) (b)

(c)

Figure 7. Brain slice: (a) Original image; (b)
Interpolated image from the mesh; (c) mesh
wiht 2302 vertices. Parameters: min border =
140, min error = 15, and k = 3.

mesh.

Figure 8a) shows the original image (called Boingo),
which we shall call Boingo. Figures 8b) and 8c) present
the Boingo’s interpolated image and mesh, respectively.

Figure 9 shows two elastic deformation of the mesh pre-
sented in figure 8b). Figures 9a) and 9c) are interpolated
images (the colors stored in the vertices are used in the inter-
polation) and figures 9b) and 9d) are the deformed meshes.

The elastic model employed in figure 9 is based on a
mass-spring sistem with constant mass in each vertex and
stiffness (spring on the edges) proportional to 1/l, where l
is the length of the edge. This example illustrates the impor-
tance of a good quality meshe, once that large deformations,
as the ones presented in figure 9, would certainly produce
invalid elements in a mesh containing bad shaped triangles.
The reason for invalid elements is that bad quality triangles
have a vertex close to an opposite edge, thus, even small
perturbations can make this vertex cross the edge, inverting
the triangle orientation, damaging the quality of the inter-
polated image.

(a) (b)

(c)

Figure 8. Boingo: (a) original image; (b)
mesh; (c) interpolated image.

6 Conclusions and Future Work

In this work we have presented an image based mesh
generation algorithm that automatically distinguishes dif-
ferent structures contained in an image while ensuring good
quality of the resulting triangular elements. The approach
does not require pre-segmentation of the image. Rather, the
segmentation is built in the mesh generation step and is sup-
ported by geometric features along with image properties.
The algorithm unifies concepts from mesh generation and
image processing in an integrated framework for automatic
meshing from images.

The strategy adopted in the first step of the algorithm,
which inserts points close to circumcenters, turns out to
be very efficient, as it avoids accumulating points around
already existing vertices and tends to improve the quality
of the triangles. The partitioning strategy, which generates
submeshes based on similarity as well as in area, has also
produced good results in the tests we have run. The adapta-
tion of Ruppert’s algorithm to work in a partitioned mesh
has given rise to a refinement strategy that improves the

(a) (b)

(c) (d)

Figure 9. Boingo’s elastic deformation.

quality of all submeshes simultaneously.
The mesh improvement step of the algorithm is currently

undergoing optimization and should improve performance
considerably.

We have been working in an strategy to estimate the pa-
rameters of the algorithm automatically, taking into account
the characterists of the image. The optimization strategies
proposed by Shewchuk [15] are also being incorporated
in the mesh improvement step, including the treatment of
small angles present in the planar graph. We are also ex-
tending the two-dimensional algorithm presented here to the
three-dimensional case.

Acknowledgements

We acknowledge the financial support of FAPESP
- the State of São Paulo Research Funding Agency
(Grant# 03/02815-0 and #02/05243-4), and CNPq, the
Brazilian National Research Council (Grants #521931/97-
5 and # 300531/99-0). The brain image is courtesy of
Saind Mary’s Hospital - London. The Taz image was
obtained in http://jupiter.ucsd.edu/ rstevens/villano/Taz.gif
and the Taurus image in http://www.free-horoscope-

reading.com/taurus.jpg The Boingo mask was downloaded
from http://www.halloween-mask.com/boingo lubati.htm.

References

[1] M. Bern and D. Eppstein. Mesh generation and optimal tri-
angulation. In H. F.K. and D. D.Z., editors, Computing in
Euclidean Geometry, pages 23–90. World Scientific, 1992.

[2] G. Berti. Image-based unstructured 3d mesh generation for
medical applications. In ECCOMAS - European Congress
On Computational Methods in Applied Sciences and Enge-
neering, 2004.

[3] S. Canic, A. Mikelic, and J. Tambaca. A two-dimensional
effective model describing fluid-structure interaction in
blood flow: analys is, simulation and experimental valida-
tion. In Special Issue of Comptes Rendus Mechanique Acad.
Sci. Paris. 2004.

[4] J. Cebral and R. Lohner. From medical images to cfd
meshes. In Proceedings of the 8th International Meshing
Roundtable, pages 321–331, 1999.

[5] A. Ciampalini, P. Cignoni, C. Montani, and R. Scopigno.
Multiresolution decimation based on global error. The Visual
Computer, 13(5):228–246, 1997.

[6] S. Fortune. Voronoi diagrams and delaunay triangulation. In
H. F.K. and D. D.Z., editors, Computing in Euclidean Geom-
etry, volume 1 of Lecture Notes Series on Computing, pages
193–233. World Scientific, Singapore, 1992.

[7] M. Garcı́a, A. Sappa, and B. Vintimilla. Efficient approx-
imation of gray-scale images through bounded error trian-
gular meshes. In IEEE Intern. Conf. on Image Processing,
pages 168–170, 1999.

[8] M. Garland and P. Heckbert. Fast polygonal approximation
of terrains and height fields. Technical Report CMU-CS-95-
181, Carnegie Mellon University, 1995.

[9] T. Gevers and A. Smeulders. Combining region splitting and
edge detection through guided delaunay image subdivision.
In IEEE Proceedings of CVPR, pages 1021–1026, 1997.

[10] D. Hale. Atomic images - a method for meshing digital im-
ages. In 10th International Meshing Roundtable, pages 185–
196, 2001.

[11] C. Huang and C. Hsu. A new motion compensation method
for image sequence coding using hierarchical grid interpo-
lation. IEEE Trans. Circuits Syst. Video Technol., 4:44–51,
1994.

[12] H. Pedrini. An improved refinement and decimation method
for adaptive terrain surface approximation. In WSCG’2001,
pages 5–9, 2001.

[13] J. Ruppert. A delaunay refinement algorithm for quality
2-dimensional mesh generation. Journal of Algorithms,
18(3):548–585, 1995.

[14] J. Shewchuk. Lecture Notes on Delaunay Mesh Genera-
tion. Department of Electrical Engineering and Computer
Science - Berkeley, CA 94720, 2000.

[15] J. Shewchuk. Delaunay refinement algorithms for triangu-
lar mesh generation. Computational Geometry: Theory and
Applications, 22(2-3):21–74, 2002.

[16] F. Sousa, N. Mangiavacchi, L. Nonato, A. Castelo, M. Tome,
V. Ferreira, J. Cuminato, and S. McKee. A front-
tracking/front-capturing method for the simulation of 3d
multi-fluid flow with free surface. Journal of Computational
Physics, 198:468–499, 2004.

[17] D. Terzopoulos and M. Vasilescu. Sampling and reconstruc-
tion with adaptive meshes. In IEEE Int. Conf. Comp. Vision,
Pattern Recog., pages 829–831, 1992.

[18] Y. Yang, M. Wernick, and J. Brankov. A fast approach for
accurate content-adaptive mesh generation. IEEE Trans. on
Image Processing, 12(8):866–881, 2003.

[19] Y. Zhang, C. Bajaj, and B.-S. Sohn. Adaptive and quality 3d
meshing from imaging data. In SM ’03: Proceedings of the
eighth ACM symposium on Solid modeling and applications,
pages 286–291, 2003.

