
A Calligraphic Interface for Interactive Free-Form Modeling with large datasets

Bruno Rodrigues De Araújo Joaquim Armando Pires Jorge
Department of Information Systems and Computer Engineering

INESC-ID/IST/Technical University of Lisbon
R. Alves Redol, 1000-29 Lisbon, PORTUGAL

brar@immi.inesc-id.pt jorgej@acm.org

Abstract

We present a sketching interface for modeling shapes de-
fined by large sets of points. Our system supports pow-
erful modeling operations that are applied directly to the
points defining the surface. These operations are based on
sketch input to allow directly creating objects using simple
strokes. Objects may be edited by either by boundary overs-
ketching, or by cutting, relief drawing on surfaces, merging
and cloning. By combining these operations we can cre-
ate complex shapes, including objects with sharp features.
Our work uses the Multi-level Partition of Unity Implicits
(MPU) technique to convert point clouds into implicit sur-
faces. Furthermore, we have devised a fast adaptive incre-
mental polygonization algorithm which takes advantage of
the MPU structure. This makes local re-polygonization pos-
sible and allows real-time modifications to large point sets
since it avoids re-calculating the whole polygonal represen-
tation from scratch after each modification.

1 Introduction

Illustrations and sketches are the starting point of any
design process to create innovative manufactured products
or to produce digital contents for 3D Computer Animation.
However, sketch-based modeling interfaces are still unused
or under-utilized by most CAD systems which continue
to explore the WIMP (Windows,Icon,Mouse,Pointing) ap-
proach instead of taking advantage of new pen-based de-
vices. Free-form sketching interfaces such as TEDDY [9]
allow modeling simple objects using few operators over
polygonal representations. We propose FreeFormSKETCH,
a calligraphic modeling system which, through a reduced
set of operators allows designers to create and interactively
edit complex free-form shapes from large point datasets.
Our goal is to provide precise and local modeling to com-
plex objects without computational time penalty. We use
the Multi-level Partition of Unity Implicits (MPU) [12] as

our internal shape representation, providing modeling oper-
ators based on sketching metaphors.

The major contribution of this work, is the ability to han-
dle large, complex forms through sketch-based operators.
We present an innovative solution to interactive modeling
using MPUs. By exploiting this technique, we are able to
interactively modify and create sharp features on objects
defined by tens of thousands of control points with local
precision, as can be seen by videos we have made avail-
able1. This is achieved by means of a new algorithm which
is able to re-polygonize only the affected parts of the object
by generating meshes adapted to local shape features. The
remainder of this paper is organized as follows. After sur-
veying related work, we present an overview of our system.
Then we describe how we adapted MPUs to allow inter-
active modeling. In Section 5, we present our operators in
detail explaining how they manipulate the implicit represen-
tation. Then we describe our polygonizer, highlighting its
support of sharp features, how it creates an adaptive mesh
in a single step and how it makes local re-polygonization
possible. Finally we draw conclusions.

2 Previous Work

In the 90’s, calligraphic interfaces for modeling appeared
thanks to the first generation of pen computers. During this
decade, the more relevant works proposing interactive mod-
eling tools based on input stroke were the SKETCH [19]
and Teddy [9] systems. SKETCH system used both sketch
and gesture recognition, proposing a wide array of oper-
ators targeted to solid modeling, objects defined by planar
faces, extrusion and CSG constructs. Its approach to sketch-
ing over a 3D view using a predefined gesture syntax was
adopted by several recent works [15, 16]. Alternatively,
Teddy proposed an interface for free form-modeling with
a simpler interaction, providing operators better adapted to

1http://immi.inesc.pt/˜brar/bear xvid.zip,
http://immi.inesc.pt/˜brar/venus clown xvid.zip



free-form such as bend, cut and smooth. However, Teddy
presented several limitations due to using polygonal meshes
which limited the variety of shapes supported. Moreover it
did not allow creating complex objects.

Over more recent years, sketch-based modeling has be-
come a growing area of Computer Graphics with the emer-
gence of several systems [10, 6, 3, 17] which adopt im-
plicit surfaces to overcome Teddy’s limitations. Karpenko’s
work [10] was the first to adopt variational implicit sur-
faces(VIS) proposed by Turk [18] to support real smooth
surfaces. However the proposed modeling operators did
not scale well because the system uses meshing informa-
tion to perform merging or oversketching of shapes. Our
first attempt to solve this problem, BlobMaker[6] did not
use meshing information. We augmented implicit func-
tions with a 3D skeleton structure retrieved from 2D mor-
phologic analysis of user input strokes. By doing so, the
system could handle more complex shapes. The same ap-
proach was followed by [3, 17], using implicit models other
than VIS. However, these representations are not powerful
enough to handle complex shapes from well-known large
datasets. Furthermore, none of them supports sharp fea-
tures such as corners or edges, sharp cuts or boolean CSG,
because they are based on C2-continuous implicit represen-
tations. This problem is partially solved in SmoothTeddy
[8] by using a mix of polygonal and quadric implicit rep-
resentations to combine advantages of both, i.e sharp fea-
tures and smooth shapes. However, this is achieved through
a separate mesh beautification step and it still is not ade-
quate to support shapes of higher complexity. To this end
we adopted the MPU implicit representation [12] in our
FreeFormSKETCH system. While several systems [14, 4]
are able to handle large datasets, however, they do not pro-
vide an attractive interface and they share the same prob-
lems as classical CAD systems.

Even though implicit surfaces provide many advantages
over polygonal meshes, they require slow methods such as
ray-tracing or polygonization to compute a visual represen-
tation. Since current hardware is still not adapted to offer
real-time ray-tracing even using GPU programming, most
practical approaches rely on meshing the implicit function.
Marching Tetrahedra [5] the most popular method uses
space subdivision following the original ideas of March-
ing Cubes [11]. However, as explained in our previous
work [7] these generate poor quality meshing and require
a post-remeshing step as devised by Ohtake [13] to improve
mesh quality and be able to approximate sharp features cor-
rectly. Surface-tracking approaches seem to be more re-
liable approaches to achieve good quality meshes without
an excessive amount of triangles or the need for a post-
remeshing step. In this vein, FreeFormSKETCH improves
on our previous surface-tracking algorithm [7] by taking ad-
vantage of MPU implicits, offering support for sharp fea-

Figure 1. FreeFormSKETCH interface with
strokes for gesture based interaction

tures and, most importantly, local re-polygonization. Pre-
viously, Akkouche [2] presented a technique for adaptive
meshing of implicit functions, based on Marching Trian-
gles [1], a surface tracking algorithm. However, his method
performs polygonization using two steps. An initial ex-
pansion step generates an incomplete mesh which gets im-
proved by a second step which solves cracks and fills holes.
Edge lengths of mesh triangles are adjusted using a mid-
point projection heuristic and Delaunay triangulation. Our
approach relies on curvature information directly extracted
from the implicit function. Other improvements are pre-
sented in more detail in Section 6. Even if our polygoniza-
tion algorithm rivals Marching Tetrahedral in running time,
it is still too slow for interactive manipulation of large, com-
plex shapes. However, to achieve interactive performance,
our operators yield local modifications. To exploit this, we
have developed local re-polygonization methods to avoid
recomputing the polygonal mesh from scratch after local
edits. This method is detailed in the next section.

3 FreeFormSKETCH Overview

The FreeFormSKETCH interface is organized into three
areas as depicted in Figure 1. On the top, a toolbar showing
all operators supported by the system which can be activated
by clicking corresponding button. The main area provides a
three-D perspective view of the scene allowing users both to
model and to edit 3D shapes. Finally, on the right a control
panel allows users to configure parameters of the currently
active operator. The interface provides the following fea-
tures:

Shape creation: Shapes are created simply by sketching
their profile over an invisible plane. After, they are automat-
ically inflated by the system which also generates the cor-



responding mesh. Since the input stroke defines the bound-
ary of a shape, self intersecting strokes are rejected. If the
sketch defines an open contour, it is automatically closed
before creating the corresponding shape.

Oversketching and Merging: To change the silhouette
it is sufficient to sketch a new boundary directly over the
shape to be edited. The oversketching operator can be per-
formed under any combination of camera view and shape
orientation. As in BlobMaker, the merge operator is invoked
by sketching a stroke connecting two shapes.

Cutting objets: The system allows users to cut an ob-
ject by sketching a lasso over its 3D representation. The
“cylindrical” volume defined this lasso and the view vector,
is subtracted from the shape. This allows either to create
holes in a shape or trim its boundary.

Local features: Other operators specify local changes
on shapes such as creases and smoothing. To create a
crease, users draw a path over the form to be edited. The
resulting crease can be controlled in terms of its width,
depth or height. It is also possible to control the transi-
tion smoothness in the area adjacent to the new crease. To
overcome unwanted sharp features created by creases, we
provide smoothing controlled by sketching over the shape.
The area benath the convex hull of the stroke is smoothed.
Users can control both the intensity of the smoothing and
the width of affected areas.

Projecting 2D user inputs: Each time the user sketches
over the 3D scene, the 2D input stroke is projected over
the scene to compute the semantics of the operation. For
example when oversketching a shape silhouette, we need to
know which objects in the scene should be affected by the
operation. We use a projection similar to BlobMaker using
the 3D camera parameters. Differently from BlobMaker,
FreeFormSKETCH supports changing the view at any time,
via a floating toolbar.

Checking operator validity: Before applying any of
the operators presented above we must check validity con-
straints as follows:

Shape Creation The input stroke defines the profile of the
new shape. Self intersecting strokes are rejected.

Oversketching Objects Input strokes should start and end
on the same shape. However, part of the stroke must
lie outside the shape.

Merging Objects Both input stroke endpoints identify dif-
ferent shapes. The intersection of both shapes can not
be empty

Cutting Objects The input stroke should represent lasso.
At least part of the lasso must strike-through a shape.

For input strokes specifying creases or smoothing, there are
no constraints which invalidate the operation, since these

strokes directly identify the affected region. When any of
these two operators are active, the shape is selected by the
projection of the first point of the stroke on a surface.The
area affected lies underneath the convex hull of the stroke,
from the camera point of view.

Increasing usability: The editor provides two interac-
tion modes to model objects. The first uses a toolbar to se-
lect the sought operator before use. The second uses the
constrains attached to each operator. In this mode, each
stroke, depending on its context (what object(s) underlie the
stroke) directly invokes the appropriate operator without re-
quiring any pre-selection. This is done by performing stroke
recognition, combined with additional constraints to avoid
ambiguity. Figure 1 depicts the different types of strokes.
In both modes, world manipulation and object manipula-
tion are performed in the same manner, i.e. by selecting the
action on the toolbar before issuing the command.

4 Free-form Shape Representation

Using the MPU implicit model combines the advantages
of point-based graphics with implicit representations. This
allows editing shapes with free-form operators such as those
implemented in our system. However, to support the oper-
ators introduced in the previous section, we had to extend
MPU data structure. Notably, links between the implicit
function and its corresponding mesh had to be added to
support local re-polygonization to provide more responsive
modelling tools.

4.1 Extending MPU for local re-polygonization

Polygonization is a time-consuming process because it
requires pseudo-sampling of the implicit function. As previ-
ously stated, we follow a surface-tracking approach to gen-
erate a mesh, which is adapted to the curvature of the shape,
in a single step. To support local re-polygonization, we cre-
ate links between mesh points and the MPU data structure
to be able to identify the meshing areas affected by mod-
elling operators. Table 1 describes the content of the MPU
cell data structure. Both openPoints and closedPoints are
lists of references to mesh vertices which are under the in-
fluence of the local shape function of this cell. When per-
forming polygonization whether global or local, the lists are
updated. Using this information, for each control point of
the implicit function which gets the corresponding MPU
cells are invalidated. Through appropriate bookkeeping,
it is easy to recover the corresponding mesh points which
should be deleted. Thus we can quickly discard and re-
compute meshes corresponding to subareas of the surface
affected by any operations on the shape.



4.2 Supporting control point changes on the MPU

Control points are the basis of the MPU data structure.
These are organized into an octree during MPU creation.
These points were used for defining each cell’s local shape
functions. When users edit a shape, we identify the re-
gion(s) affected by each operation. Then we apply the op-
erator to the implicit function. Finally we update the cor-
responding mesh. From the MPU standpoint, there are two
types of operators. Displacement operators update control
points. Editing operators add to or delete control points
from the structure. To support this, we extended the MPU
data structure with three new functions. When perform-
ing changes to control points, we identify affected cells by
checking the point against all the cells in the octree. This
verification is made by applying the same distance test as
used by the MPU to create local shape functions. If the cell
is affected, then the local shape function must be rejected
and the cell should be rechecked, thus resetting its internal
checked flag. After this step the MPU octree remains in-
complete. However, the data structure will be regenerated
during local re-polygonization to generate new local shape
functions which fit the new control points.

5 Modelling operators over MPU implicits

In a similar manner to BlobMaker or Teddy, users sketch
a contour to create a new shape (Figure 2 left). However, in
order to create the MPU implicit representation, we need to
collect enough control points and their normal vectors. We
chose to follow the same approach as BlobMaker by gen-
erating a VIS using the 2D contour to create boundary and
normal constraints which is sufficient to handle the simple
shapes created by users with a single stroke. Then the VIS
representation is sampled, generating control points to fill
the new MPU implicit function (Figure 2 right). This sam-
pling step is performed using a simple octree to subdivide

Parameter Description
root Refers to the root cell of the octree
subcells Refers to cell children
laf Refers to the local shape function
checked flag indicating if the local shape function

should be generated
leaf flag indicating if cell is a leaf
center 3D position of the cell center
size size of the cell
openPoints list of meshing unexpanded points
closedPoints list of meshing closed ponts

Table 1. MPU Cell content

Figure 2. Shape creation example

the 3D space and create a cloud of points with enough den-
sity to uniformly populate the MPU structures. Finally, we
generate a mesh for visualization (Figure 2 middle). This
process is computationally expensive enough to render sim-
ple shapes (such as those created in single interactions) in
real time. FreeFormSKETCH offers also the ability to im-
port Polyformat (PLY) or Stereolithography (STL) formats
typical of large data sets. In this scenario all the information
needed is present in the datasets. We reuse the importation
facilities provided by the MPU authors [12].

5.1 Merging objects

The merge operator uses an approach similar to Blob-
Maker’s. However, we extended it in order to allow users
to control the smoothness of the transition between the two
shapes involved. On the order hand, if smooth blending is
disabled, merge behaves like a boolean CSG addition. This
operator is implemented over the MPU thanks to the con-
trol point manipulation described on Subsection 4.2. The
new shape is represented by merging two MPU structures.
However, due to the different orientations of both octrees,
it is only possible to reuse one of the object data structures.
This is composed by the updated MPU from the first object,
whose cells need to be rechecked and the meshing infor-
mation attached to it (which presents broken link due to re-
moving the intersection of the objects). After this step, we

Figure 3. Merging results



Figure 4. Oversketching example

complete the MPU information with new points and their
normal vectors retrieved from the remaining part of the sec-
ond object. We then regenerate the MPU’s kd-tree. After,
smooth blending is applied to control points located near
the junction region if the smoothing parameter is not zero.
Figure 3 depicts both scenarios, where the top row shows
a merge with smooth blending. This is explained in more
detail on the following subsection. As result of these op-
erations, the new MPU corresponding to the merge of both
objects is obtained. However, broken links still remain in
the mesh. Moreover, the mesh corresponding to the sec-
ond object is still missing. So, instead of re-polygonizing
the whole shape, we perform a local re-polygonization step
starting from the first object mesh.

5.2 Oversketching objects

The oversketching operator changes shapes by adding
new control points to the MPU. This is similar to creating
an appendix shape followed by a merge with the existing
shape. To perform oversketching, we create a new blob de-
fine by the user’s input stroke using the same approach as
BlobMaker. However, since the stroke only defines the out-
side part of the new object as depicted in Figure 4, we need
to extract more information to create a new contour which
defines the appendix. The input 2D stroke is closed by using
a half-ellipse projected on the original shape to join stroke
endpoints. We perform tests and adjustments to guarantee
that the projection of new points still lies inside the shape
(Figure 4 middle).

5.3 Cutting

The cutting operator is performed by sketching a lasso
that intersects the object as shown in Figure 5. First, we
delete all control points from the MPU and meshing points
located inside the cut part. Then we reconstruct the MPU
and re-polygonize the missing parts of the shape. To remove
such points, we project the stroke over the shape, by creat-
ing a set of 3D planes defined by two consecutive projected
points and the 3D camera look-at vector. Then we reject
any control point of the MPU inside the cut volume. We
use the set of planes to delimit this volume. This process is
similar to a 3D version of the Point-in-Polygon algorithm.

Figure 5. Steps of the cutting operator

After rejecting the unneeded control points, new ones are
created using the projection of the stroke. These points are
defined step by step by sampling the missing intersection
area of the shape. In a manner similar to previous oper-
ators users can specify smoothing which is automatically
applied in the transition region. Finally we perform a local
re-polygonization step to complete the mesh.

5.4 Creating Creases on shapes

This operation changes control points in the MPU data
structure which are located near to the region beneath the
user-drawn stroke. First, we project the stroke on the 3D
shape to get the affected region. By adjusting the parame-
ters which define the crease (width, height and amplitude),
users are able to create different effects such as bumps or
valleys. The MPU control points located near the affected
region, are updated according to their distance to the pro-
jected stroke. along the stroke width, they are changed de-
pending of the height value along the normal to the shape
at each point. The amplitude defines the smoothness of the
transition using a quadric B-Spline based on the distance to

Figure 6. Relief Drawing Example: the ren-
dered object and respective meshes



Figure 7. Smoothing operator example

the stroke. Finally the mesh is updated by re-polygonization
as shown in Figure 6.

5.5 Smoothing Shapes

Similar to previous operators, the smoothing operator
updates the position of control points and thus requires local
re-polygonization. Smoothing is controlled by two param-
eters: width and intensity. The width defines the stroke’s
area of influence. The intensity is defined as the radius of
the smoothing factor. For each control point located inside
the area to be smoothed, we compute the centroid of neigh-
bor points within the radius value and the average of their
normal vectors, to define a 3D plane onto which control
points are projected. If the control point is located outside
the smoothing area its radius is gradually reduced to pro-
vide soft transitions such as depicted by Figure 7. Follow-
ing this approach, we achieve good visual results without
undue performance penalties while avoiding an extra pro-
cessing step.

6 Polygonization of MPU implicits

Our polygonization is based on the technique developed
for BlobMaker [7]. The algorithm generates an adaptive
mesh using local characteristics such as curvature and tak-
ing advantage of the MPU representation in order to repre-
sent sharp features such as edges and corners. Following a
surface tracking approach, it starts from a seed point of the
surface, to construct an adaptive mesh in a single step.

6.1 Mesh expansion

Our algorithm uses direct point expansion instead of
storing explicit representations of fronts as in BlobMaker.
This allows us to avoid merging or splitting fronts. Unex-
panded points remain stored in a simple bucket data struc-
ture. For each unexpanded point, we store a list with all

its neighbor, while highlighting the two adjacent points on
the expansion boundary. Another list contains the triangles
defined by unexpanded points. We apply Blobmaker-type
expansion using each point and its two adjacent points. Dur-
ing this step, we create new points are and insert them into
each bucket while updating their connections. When the ex-
pansion of a point is finished, it is removed from the bucket.
This process is repeated until there are no more unexpanded
points in the list. During this step we update the lists pre-
sented in the subsection 4.1 to generate links between the
meshing and corresponding MPU cells.

6.2 Adaptive Meshing

During expansion, we use heuristics based on the curva-
ture of the implicit surface to compute edge length of output
triangles as presented in [7]. To avoid unstable values of
curvature, we choose an approximation by searching near
the candidate point to be expanded. Even if this step is
computationally more expensive, its provides better qual-
ity meshes. This approximation, based on binary search,
is made comparing the expansion edge lenght of the unex-
panded point P with its proposed expansion P1. If curvature
changes between P and P1 are greater than 80 percent of the
value computed at P, the middle point between P and P1 is
used instead of P1. Using this solution, we achieve better
guesses for edge length in regions with steep variations of
curvature.

In order to avoid incorrect expansions, we introduced
two new tests which proved essential to achieving better re-
sults. The first tries to avoid that the mesh expansion returns
back on itself, and the other is the binary search step pre-
sented above to define the edge length for each newly gener-
ated triangle. The number of new points generated for each
expanded vertex remains unchanged as compared to Blob-
maker. However, this new approach requires some adjust-

Figure 8. Edge Length readjustment during
expansion.



ments as depicted in Figure 8 when the distances between
the unexpanded point (red point) and each of its neighbors
(blue points) are too different. In order to provide a mesh of
better quality, we balance the distance between new points
and the unexpanded point using the distance to booth ad-
jacent points. First, we compute the center C of the circle
with radius given by the average of distances D1 and D2.
Then we subdivide the angle ̂PRCPL following the same
subdivision than ̂PRPPL. The resulting new points PVi up-
date the mesh with new triangles formed by joining them to
the unexpanded point.

6.3 Collision detection

Since our algorithm follows a surface tracking approach,
the expansion of a point must avoid overlapping the exist-
ing mesh. We apply collision detection is applied to solve
this problem, to guarantee that the expansion is safe. This
checks the unexpanded neighbors of the pivot in our previ-
ous system. However, we take advantage of the MPU octree
data structure. Using the cell information presented in sub-
section 4.1, we are able to access those points directly. This
avoids having to apply the collision test to all unexpanded
points. This improvement makes our algorithm faster than
BlobMakers even when polygonizing more complex ob-
jects. When a collision is detected, we create a new edge
between the expanded point and the nearest colliding point.
Then we link the points adjacent to each point by adding
four new triangles to the mesh. In this way we avoid in-
consistent unexpanded points during the meshing process.
This solution is both simpler and faster than the previous
one which used front division and unification.

6.4 Approximating edges and corners

In order to support sharp features, we use the implicit
function value and its gradient to approximate corners and
edges as depicted in Figure 9. When MPU cells represent
edges or corners, the local shape function f is the maximum
of two convex quadrics f1 and f2. We compute the intersec-

Figure 9. Example of corner approximation
performed by our polygonizer

tion of both quadrics by f(X) = max(abs(f1), abs(f2)).
The gradient is then defined as the larger value of the gradi-
ent values. The global implicit value is defined by a blend-
ing of the local shape functions using weighting factors and
searching the octree. When implicit function is at an edge
or at a corner, the weight value applied to the function is
unity, discarding all the information from neighbor points.
This allows that during expansion, we can easily change
the function behavior for our polygonizer when corners are
detected and adapting the edge length correctly. If during
expansion, we detect edges that are too long as compared
to the curvature value, we check the approximation with the
new function. However if edges are still too long, we apply
a normal expansion step, thus discarding the sharp feature.
This approach makes our algorithm slower in edge or corner
regions. Moreover, computing the normal vectors at points
lying on edges or corners is problematic. This is because the
blending mechanism of the MPU does not provide precise
values for these features. For this reason, we approximate
normal vectors in boundary points by interpolating the nor-
mals of their neighbor.

6.5 Local Re-polygonization

The method presented in Section 4 updates the MPU cor-
rectly by flagging cells which need to be rechecked dur-
ing re-polygonization. However, to polygonize of missing
parts, we need to identify the set of points that delimit the
open mesh. This is done by creating a new bucket from
the broken links remaining in the mesh. A recovery process
checks triangles in the mesh which contain a broken link
and discarding those which are not connected to a triangle.
Otherwise if there are triangles, two cases may arise. First,
if all the triangles are connected, the point is inserted into
the bucket and marked as unexpanded. Otherwise, if any
of the triangles is not connected, the recovery is not possi-
ble since more than two points are to be connected. In this
case, the point is removed and its connected triangles are
deleted from the mesh. After the recovery step, we apply
mesh expansion to the unexpanded points such as before
thus covering all the missing parts of the mesh as shown in
Figure 10.

7 Conclusions

FreeFormSKETCH is a calligraphic interface for free-
form modelling which allows editing data sets defined by
tens of thousands of points. We have adapted sketch-based
operators to the MPU implicit model providing a complete
set of free-form operators in order to manipulate those func-
tions. Indeed, our system makes it possible to create shapes
by sketching their contours, to merge 3D objects, to overs-
ketch the boundary (silhouette) of a shape and to perform



Figure 10. Local re-polygonization of the Igea head after relief drawing

CSG-subtraction cuts. Moreover, we offer local operators to
create sharp features such as creases and valleys by sketch-
ing directly on the shape. To this end, we have adapted
our surface tracking polygonizer in order to be able to ren-
der sharp features such as corners and edges. Notably, by
using MPU information we are able to avoid complete re-
polygonization of complex surfaces after users perform lo-
cal changes. By doing so, we can interactively and quickly
modify complex shapes retrieved from large datasets.

8 Acknowledgements

This work was supported in part by Portuguese Science
Foundation (FCT) grant POSC/EIA/59938/2004 and by Eu-
ropean Commission grant IST-2003-004785 (IMPROVE).
The authors would like to thank Carolina Freitas Antão and
José Alberto Almeida for implementing the prototype.

References

[1] J. I. A. Hilton, A. Stoddart and T. Windeatt. Marching tri-
angles: range image fusion for complex object modeling.
International Conference on Image Processing, 1996.

[2] S. Akkouche and E. Galin. Adaptive implicit surface poly-
gonization using marching triangles. Computer Graphics
Forum, 20(2):67–80, 2001.

[3] A. Alexe, V. Gaildrat, and L. Barthe. Interactive modelling
from sketches using spherical implicit functions. In Pro-
ceeding of the 3rd AFRIGRAPH ’04, pages 25–34. ACM
Press, 2004.

[4] R. Allègre, A. Barbier, E. Galin, and S. Akkouche. A hybrid
shape representation for free-form modelling. In SMI, pages
7–18, 2004.

[5] J. Bloomenthal. An implicit surface polygonizer. In P. Heck-
bert, editor, Graphics Gems IV, pages 324–349. Academic
Press, Boston, 1994.

[6] B. de Araújo and J. Jorge. Blobmaker: Free-form modelling
with variational implicit surfaces. In 12 Encontro Português
de Computação Gráfica, pages 335–342, 2003.

[7] B. de Araújo and J. Jorge. Curvature dependent polygoniza-
tion of implicit surfaces. In SIBGRAPI’04 Conference Pro-
ceedings, pages 266–273. IEEE Computer Society, 2004.

[8] T. Igarashi and J. F. Hughes. Smooth meshes for sketch-
based freeform modeling. In SI3D ’03: Proceedings of the
2003 symposium on Interactive 3D graphics, pages 139–
142. ACM Press, 2003.

[9] T. Igarashi, S. Matsuoka, and H. Tanaka. Teddy: A sketch-
ing interface for 3d freeform design. Proceedings of SIG-
GRAPH 99, pages 409–416, August 1999. ISBN 0-20148-
560-5. Held in Los Angeles, California.

[10] O. Karpenko, J. F. Hughes, and R. Raskar. Free-form sketch-
ing with variational implicit surfaces. Computer Graphics
Forum, 21(3):585–585, 2002.

[11] W. Lorensen and H. Cline. Marching cubes: a high resolu-
tion 3d surface construction algorithm. Computer Graphics,
21(4):163–169, July 1987. Proc. of SIGGRAPH’87.

[12] Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, and H.-P. Seidel.
Multi-level partition of unity implicits. ACM Trans. Graph.,
22(3):463–470, 2003.

[13] Y. Ohtake, A. Belyaev, and A. Pasko. Dynamic meshes for
accurate polygonization of implicit surfaces with sharp fea-
tures. In SMI, pages 74–81. IEEE, 2001.

[14] M. Pauly, R. Keiser, L. P. Kobbelt, and M. Gross. Shape
modeling with point-sampled geometry. ACM Trans.
Graph., 22(3):641–650, 2003.

[15] J. P. Pereira, J. A. Jorge, V. A. Branco, and F. N. Ferreira.
Calligraphic interfaces: Mixed metaphors for design. In
DSV-IS, pages 154–170, 2003.

[16] A. Shesh and B. Chen. Smartpaper: An interactive and
user friendly sketching system. Comput. Graph. Forum,
23(3):301–310, 2004.

[17] C.-L. Tai, H. Zhang, and J. C.-K. Fong. Prototype model-
ing from sketched silhouettes based on convolution surfaces.
Computer Graphics Forum, 23(1):71–83, March 2004.

[18] G. Turk and J. F. O’Brien. Shape transformation using vari-
ational implicit functions. In SIGGRAPH ’99 Conference
Proceedings, pages 335–342. ACM Press, 1999.

[19] R. C. Zeleznik, K. P. Herndon, and J. F. Hughes. SKETCH:
An Interface for Sketching 3D Scenes. In H. Rushmeier,
editor, SIGGRAPH 96 Conference Proceedings, pages 163–
170. ACM SIGGRAPH, Addison Wesley, Aug. 1996.


