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Abstract nigue is based on line detection, and selection of line seg-
ments within a range of values (determined by maximum
The problem of detecting rectangular structures in im- and minimum building sizes). Given an initial line segment,
ages arises in many applications, from building extraction anti-parallel lines are searched. A pair of anti-parallet$
in aerial images to particle detection in cryo-electron mi- is used to define a search region, where the remaining two
croscopy. This paper proposes a new technique for rect-sides of the rectangle are searched.
angle detection using a windowed Hough Transform. Ev-
ery pixel of the image is scanned, and a sliding window is  Tao et. al [20] proposed a primitive-based approach for
used to compute the Hough Transform of small regions of extracting rectangular buildings from aerial images. kirth
the image. Peaks of the Hough image (which correspondapproach, edge elements are found and linear elements are
to line segments) are then extracted, and a rectangle is de-extracted using a splitting arithmetic. Start-point, quudnt
tected when four extracted peaks satisfy certain geometricand orientation of each linear element are used to detect par
conditions. Experimental results indicate that the pragbs  allel lines, and pairs of parallel lines are used to form-rect
technique produced promising results for both synthetit an angular primitive structures. Finally, these primitive® a
natural images. merged to form rectangles.

Zhu et. al. [25, 23] used a different approach to detect
rectangular particles in cryo-electron microscopy images
by proposing &ectangular Hough Transfor@RHT). If the

The problem of rectangle detection arises in several prac-S'des of arectangle are known, the RHT uses a 2-D accumu-
tical applications. For example, an important problem in Iatorar_ray to detept the center and orientation of the recta
cryo-electron microscopy is automatic detection of parti- 9/€- This method is fast and produces good results, but only
cles with rectangular or circular shapes [24, 25]. Aerial im WOrks if all rectangles in the image have the same dimen-
agery is utilized for semi-automatic and automatic detec- SIonS, and these dimensions must be known.
tion of rectangular structures, such as vehicles [22, 1d] an
buildings [7, 15, 8]. Rectangle detection may also be use- In this paper, we explore geometric characteristics of a
ful for recognizing license plates of cars in images or video rectangle in the domain of the Hough Transform [3], and
sequences [5]. such characteristics are used for rectangle detectioothjire

Most rectangle detection techniques reported in the liter- in the Hough space. The proposed technique works for rect-
ature are based on edge and line primitives. Next, we brieflyangle with unknown dimensions and orientations, and does
describe some of these techniques. not require the extraction and/or grouping of linear seg-

Lagunovsky and Ablameyko [10] proposed a rectan- ments (i.e., itis applied directly to the edge map).
gle detection technique based on line primitives. First, li
ear primitives are extracted, then line segments, which are  The remainder of this paper is structured as follows. In
grouped in straight lines. The length and orientation of¢he the next Section, the Hough Transform is briefly explained.
straight lines are compared and used to detect quadranglesn Section 3, the image of a rectangle through the Hough
that are further approximated by rectangles. Transform is analyzed. Section 4 describes the proposed

Lin and Nevatia [12] studied the problem of rectan- technique in details, and Section 5 shows some experimen-
gle/parallelogram detection in aerial images. Their tech- tal results. Concluding remarks are given in Section 6.

1. Introduction



2. TheHough Transform 3. Rectangle Patternsin the Hough Space

Let us consider a rectangle with verticBs = (1, 1),

The Hough Transform (HT) is a powerful method for P, = (z9,y2), Ps = (x3,y3) andPy = (x4,y4), With P, Py
detecting linear structures in images. Duda and Hart [3] ex- and P; P4 being parallel sides with length as well asP, P;
plored the fact that any line on theg plane can be described and P, P; with lengthb. Also, let us assume that the origin
asp = x cos f + ysin 6. In this representation, is the nor- of the coordinate system is located in the center of the rect-
mal distance and is the normal angle of a straight line, angle, as shown in Figure 2.
as shown in Figure 1. Applying the Hough Transform to a
set of edge pointée;, y;) results in an 2D functio®(p, 0)
that represents the number of edge points satisfying the lin
ear equatiop = x cos f + y sin 6. In practical applications,
the angled) and distancep are quantized, and we obtain
an arrayC(py, 6;). The local maxima of®(py, ;) can be
used to detect straight line segments passing through edge
points.

0p
Figure 2. A rectangle centered at the origin of
the coordinate system.

xr

Figure 1. Representation of a straight line in

Hough parameters p and 6. The image of this rectangle in the Hough Space in shown

in Figure 3. As expected, there are four peaks, labelled as
Hy = (p1,61), Hy = (p2,62), H3 = (p3,03) andH, =
(pa,84), that correspond to the four sides of the rectangle
(P, P3, P Py, P3P, and P, P, respectively).

Several variations of the HT have been proposed since
its original formulation, in order to reduce computational " Iy,
cost or improve the accuracy of line detection. Examples 2| S K
of such techniques are the Probabilistic HT [9], Random- =
ized HT [21], Hierarchical HT [16] and Progressive Prob- N ,;[
abilistic HT [13]. Ballard [1] developed the Generalized 2 3 :
Hough Transform (GHT), that can be used to detect arbi-
trary shapes (including rectangles). However, a genecie re
angle has 5 degrees of freedom: two coordinates of the cen-

ES

ter, width, height and orientation. This would lead to a 5-D | - H,
accumulator array, demanding memory and computational -y ‘ A K/
power. ;
. Hy
Some work have been done about shape description in . y
the Hough Space. Rosenfeld and Weiss [17] proved that a L
convex polygon is uniquely determined by the peaks of its “ A = 90° o

HT (in fact, these peaks form the convex hull of the poly- Figure 3. The HT of a rectangle centered at
gon). However, we face a different problem: detecting rect-  the origin.

angles in images containing several objects. Given the HT
of an image, we want to detect patterns in the Hough Space
that can characterize rectangles. For that purpose, we note

that a rectangle has specific geometric relations, thatean b It can be observed that these four peaks satisfy specific
detected directly in the Hough Space. geometric relations:




1. They appear in pairs: the first one is formed by peaks

For example, let us consider the synthetic image illus-

H, and H,, atf = «g; the second one is formed by trated in Figure 4, witl256 x 256 pixels. The largest pos-
peaksHs andHy, atf = «y. sible diagonal belongs to the rectangle on the top of the im-

2. Two peaks belonging to the same pair are symmetric
with respect to thé axis, i.e.,p1 + p2 = 0 andps +

age, and is used to determine the external diameter of the
search regionD,,,,, = 60 pixels. The smallest possible
side belongs to the rectangle in the middle-left portion of

pa=0. the image, leading to an internal diameiy,;,, = 13 pix-
3. The two pairs are separatedfyy = 90° in thef axis, els. Figure 5 shows the edge map of synthetic image com-
i.e.,|a; —agl =90°. puted with Canny’s operator [2] and the choice of parame-

4. The heights of two peaks within the same pair are ex-
actly the same, and represent the length of the respec-

ters D,,;, and D, .. It @lso illustrates an example of the
ring-like search region.

tive line segment, i.e((p1,601) = C(p2,02) = band
C(ps,03) = C(pa,0s) = a.

5. The vertical distancew (axis) between peaks within
each pair are exactly the sides of the rectangle, i.e.,
p1—p2=aandps —ps =b.

It should be noticed that these relations may not be true
if there are other structures present in the image, because
edges related to noise or other structures have a global in-
fluence in the Hough image. In particular, relations 1,2 and
3 are more robust in the presence of other structures, and are
strongly explored in this work for rectangle detection inim
ages. Next, the proposed algorithm is explained.

4. TheProposed Algorithm

The basic idea of the proposed algorithm is to search ev-
ery pixel (z,y) of the image, compute the HT of the edge

Figure 4. Synthetic image containing several
geometric objects.

image in a certain neighborhood centere¢hat)), find rel-
evant peaks of the HT, and use the conditions described in
the previous Section to determine if there is a rectangle cen

tered at(x, y). These steps are described in details next.

4.1. Computing the Windowed Hough Transform

Let us consider a pixelz, yo), and a neighboring re-
gion centered afzo, yo). This region must be large enough
to contain all the edges of any possible rectangle centered
at (xo, yo). On the other hand, it should be as small as pos-
sible, to avoid edges belonging to other structures (and/or
noise-related edges).

A suitable search region is a ring with internal diameter
D,,.;», and external diametdb,,, ... The choice of these pa-
rameters is made based on the sizes of rectangles to be de-
tected:D,,,;,, should be approximately equal to the smallest
size of any possible rectangle, abg, .. should be approxi-
mately equal to the largest diagonal of any rectangle ptesen
in the image. Such choice of parameters ensures that any
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Figure 5. Edge map of synthetic image and
size of search region.

rectangle in the image will have all of its edges within the
search region (when the center of the search region matches
the center of the rectangle).

OnceD,,;, and D,,,, are chosen, the HT is computed



using quantized orientatiorfsand distanceg. As noticed
by Shen and Wang [19], discretization stefgsandd,, de-

pend on the size of the input image. For large imaggs, Hf
and d, must be small (consequently, the resulting Hough % i
image would be large). In this work, Furukawa and Shina- F H;
gawa’s idea [4] was adapted. For an image having width Pis v A
Wy and heightH|,, they computed the Hough image with - H; e
width 4W; /3 and heightt1¥, /3. In our case, we can con-
sider thatWy = Ho = Dz, Which would lead to dis- Figure 6. (a) Hough Transform of the test re-
cretization steps given by gion. (b) Enhanced Hough Transform and de-
tected peaks.
do= 2, dy=> &)
4D max 4
4.2. Finding Local Maxima of theHT 4.3. Detecting Rectangle Patterns

The following step is to detect line segments within the L&t H1 = (p1,61), Hy = (p2,02),... Hin = (pm, Om)
search region, by extracting peaks of the HT. Sieg, 6) denote them peaks ofCenn(p, 0). The next step is to find
represents the number of edge points satisfying the linearfour peaks satisfying the conditions listed in Section 3.
equationp = x cosf + ysin 6, a simple way to find peaks For that purpose, all peaks are scanned, and pélaks
of the HT is to extract all points satisfying(p,6) > Tc Hj are paired together if they satisfy the following condi-
(i.e., all straight lines witl= or more pixels would be re- ~ tions:
trieved). However, noise and other structures can degrade 5y _ 10; — 0, < T,

. i J 2
the accuracy of such peak estimate [11, 6]. Ap = |pi+pj| < T, 3)

In fact, peaks can be detected more robustly by analyz- C (03, 05) — Clp;,6,)| < T C(pi,0:)+C(p;,0;)

ing butterflypatterns that arise in the vicinity of peaks [11]. Pi» e P+ L 2 '
In this work, a simplified version of the butterfly evaluator 7, js an angular threshold, and determines if petlksnd
proposed by Furukawa and Shinagawa [4] was used to e+, correspond to parallel lines (i.6; ~ 6;). T, is a dis-
hance the Hough image. Such enhanced image is given byitance threshold, and is used to check if the lines related to
H; and H; are symmetric with respect to tlteaxis (i.e.

2
Cenn(p, 0) = hw YCRrTIP Clp,9) , (2 pi = —p;). Ty is a normalized threshold, and determines
/ Clp+y,0 + z)dzdy if line segments corresponding I$; and H; have approxi-
—hy2d w2 ' mately the same length (i.€!(p;, 0;) ~ C(p;, 0,)).

Each pair of peakd]; and H; satisfying Equation (3)

whereh andw are the width and height of a rectangular re- generates an extended peak= (¢, ay,), where

gion used for this enhancement. Sipcndd are quantized,
the integral defined in Equation (2) is computed through a
convolution with a rectangular mask.

Finally, local maxima of the enhanced imag@enn(p, 0)
satisfyingC(p,0) > T¢ are stored as peaks. It should be
noticed thafl- is related to the internal diametér,,,;,,. In
fact, a suitable choice iBc = 0.5D,,;, (such that line seg-
ments with less than half of the minimum rectangle size are
ignored).

To illustrate this procedure for locating local maxima of
the HT, let us consider the test region shown in Figure 5
(this region is centered at pixel (139, 119), which is marked Aa = [Jay, — g — 90°| < Tn, (5)
with a square). Figure 6(a) shows the HT of the test region,
and Figure 6(b) shows the enhanced HT with local max- whereT, is an angular threshold that determines if pairs of
ima marked with crosses. Six local maxima were retrieved, lines P, and P, are orthogonal.

1 1
ak:§(9i+0j) andfk:§|Pi—Pj|- (4)

It should be noticed tha®, encodes information about both
peaksH; andH;, becausé; ~ oy, 0; = ax, p; =~ —&, and
pj = &

The final step of the proposed technique is to compare all
pairs of extended peakd, and P, and retrieve those that
correspond to orthogonal pairs of parallel lines (hence, re
lated to a rectangle). A rectangle is then detected if:

and labelled a$i,, Hs,...,Hs. Finally, the vertices of the detected rectangle are ob-
tained through the intersection of the two pairs of parallel
1 it should be noticed that discretization steps are inlg@eportional lines. The orientation of the detected rectangle is given by

to dimensions of the Hough image ay, and the sides are given ng and2¢;.



For instance, let us consider the coordinates and the One possible solution to prevent detection of duplicated

heights of the peaks shown in Figure 6(b):

Hy, = (—7.76,—65.37°), C(H,) = 14,
Hy = (—11.93,-10.42°), C(H>) = 12,
Hs = (13.07,-8.53°),  C(H;) = 14,
H4 = (23.07,44.53°), C(H,) = 14,
= (8.9,78.60°), C(Hs) = 16,

H<) = (—9.43,78.66°),  C(Hg) = 15.

SettingTy = 3°, T, = 3 and1 = 0.4, we can observe that
peaksH, and Hj satisfy conditions (3), and thus generate
P, = (£12.50,—-9.47°) according to Equation (4). Peaks
Hs and Hy also satisfy conditions (3), and generdte =
(£9.17,78.63°).

SettingT,, = 3°, it can be observed that extended peaks
P, and P, satisfy condition (5). Thus, a rectangle centered

at pixel (139, 119) is detected. The vertices of such rectan-

gle are the intersections of straight lines corresponding t
the extended peakB, and P,. This rectangle has a tilt an-
gle of —9.5° with respect to ther axis, with sides of ap-
proximately25.0 and 18.3 pixels. Exact values (measured
directly from the original image) are9.5°, 24.3 and17.5
pixels, respectively.

4.4, Removing Duplicated Rectangles

rectangles would be to set tighter (lower) thresholds for co
ditions (3) and (5). However, this could lead to misdetectio
of actual rectangles.

A more adequate solution is to compute an error mea-
sure for each detected rectangle, and to choose the rectan-
gle for which the error is the smallest. In fact, each redi&ng
is represented by a pair of extended pe&ksand P, and
there is an orthogonality error measuke: given by con-
dition (5). Furthermore, each of these extended peaks was
obtained by comparing a pair of regular pedksand H ;,
and there are parallelism and distance error measiifes
andAp, according to conditions (3). Thus, there are five er-
ror measures related to each rectangl@;,, A6;, Apw, Ap;
andAca. The proposed error measure is given by:

E(Py. B) = \/a (A6} + A6} + Aa2) +b(Ap? + Ag?),

(6)
wherea andb are weights for angular and distance errors,
respectively. It should be noticed that units for thesererro
measures are differenf\@ and Ap are given in degrees,
andAp in pixels. Visually, a difference of one pixel is more
significant than a difference of one degree. To compensate
such visual difference, the weight for distance error stioul
be larger (typical values are= 1, b = 4).

Equation (6) was applied to all seven rectangles depicted
in Figure 7, and the error measure was minimized for the

The procedure described so far can efficiently detectectangle shown in Figure 8.

rectangles with different orientations, center and sides.

However, threshold¥y, T, T,, andT;, may generate du-
plicated rectangles for neighboring centers. For exanaple,
region with internal diameter of 13 pixels and external di-

ameter of 60 centered at pixel (139, 119) was used to detect

a rectangle centered at that pixel. Sliding the center &f thi
region in a x 5 neighborhood around pixel (139,119) also

leads to seven detections of the same rectangle with a slight
difference in the center, sides and orientation, as shown in

Figure 7. Black dots indicate centers of detected rectangle

Figure 7. Multiple detection of the same rect-
angle.

Figure 8. Choice of the detected rectangle
with minimal error.

5. Experimental Results

The proposed technique for arbitrary rectangle detection
was tested in both synthetic and natural images. For exam-
ple, the result of applying the proposed technique to the syn
thetic image of Figure 4 is shown in Figure 9. As it can be
noticed, all rectangles were successfully detected (the pa
rameters used werdy = 3°, 7, = 3,7, = 04, and
T, = 3°).



lustrated in Figure 11(b). The parameters used for this im-

age wereD,,;, = 14, Dpyee = 60, Ty = 3°, T, = 3,
Ty, = 0.25, andT,, = 3°.
In several applications, not every pixel of the image is a

valid candidate for center of a rectangle. For exemple, let
us consider the aerial image56 x 256 pixels) shown in
Figure 12(a). There are several rectangular buildingd) wit

05 @ bright rooftops. Clearly, the only candidates for centdrs o

rectangles are bright pixels. To reduce the search space,

a binary image was constructed by thresholding the origi-
nal image so that pixels below intensity 150 were removed.

/\\ Morphological erosion was then applied to obtain only the

interior of candidate buildings, as shown in Figure 12(b).

Remaining pixels were used as candidate centers for the

proposed technique, using the edge map illustrated in Fig-
Figure 9. Rectangles detected for synthetic ure 12(c) (this edge map was obtained by applying a denois-
image. ing method [18] followed by Canny’s algorithm). Detected
rectangles overlaid to the denoised image are shown in Fig-
ure 12(d) (such rectangles were produced usng, = 9,
Dipaz = 29, Ty = 5°,T, = 2, T, = 0.5, andT,, = 5°).
Most of building were successfully detected. However, the
fourth building from left to right at the top of the image was

The result of adding spurious edges to Figure 5 is shown
in Figure 10 {0% edges were artificially added at ran-
dom positions). It can be noticed that all rectangles were

still detected using the proposed method. However, if noise "ot .segmenltefd. AII_SO’ tgebrell\év_as somi cct))nfusmn fmhth? de-
contamination is too large, spurious edges may introduce!ection result for aligned buildings at the bottom of the im-

false peaks in the Hough image (hence, small line segmenté‘ge' This happens because parallel sides of adjacent build-

may not be detected or line segments due to noise could bdN9S also introduce aligned_peaks in the HT, an(_j some of
wrongly detected). them may correspond to valid rectangle hypothesis (accord-

ing to conditions (3) and (5)).
In fact, the proposed method can produce false detec-
tion results when aligned rectangles are close to each oth-
ers, as depicted in Figure 13(a). It can be noticed that a rect
angle was falsely detected in the middle of the image. Fig-
ure 13(b) shows a close up of the edge map around this rect-
angle, where four line segments can be observed. More pre-
cisely, there are two pairs of parallel line segments, ganer

ing two pairs of peaks in the HT (Figure 13(c)) that satisfy
08 @ conditions (3) and (5). If the average graylevel of the de-
sired rectangles is known, such false rectangles can be eas-
@ ily removed by comparing the intensity inside the rectangle
with the expected average grayvalue.

@ 6. Conclusionsand Future Work

Figure 10. Noisy edge map (70% of new edge In this work, a new procedure for rectangle detection
pixels) of synthetic image and detected rect- based on a windowed Hough Transform was presented. A
angles. sliding window is used to compute the HT of small por-

tions of the image, and peaks are extracted. Geometric con-
straints are used to determine the existence of a rectangle
centered at the origin of the sliding window.

An example of license plate detection is shown in Fig-  Preliminary results indicate that the proposed method
ure 11. In Figure 11(a), the original imag&t( x 320 pix- can successfully detect rectangles with varying sizes and
els) and the detected license plate are shown. The correerientations, showing good performance when applied to
sponding edge map obtained with Canny’s operator is il- natural and synthetic images (as long as an efficient edge
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Figure 12. (a) Original aerial image. (b) Search space for centers of rectangles. (c) Edge map. (d) De-
noised image and detected rectangles.

L

detector is used). It is more flexible than the technique used Future work will concentrate on combining this edge-
by Zhu et al. [25], with a computational complexity far be- based method with region-based approaches to further in-
low the Generalized Hough Transform (GHT) [1]. crease accuracy in rectangle detection, and reduce false de



(a) (b)
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Figure 13. (a) Image and detected rectangles.
(b) Close up of edge map around falsely de-
tected rectangle. (c) Hough Transform of Im-
age (b).
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