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Cláudio Rosito Jung and Rodrigo Schramm
UNISINOS - Universidade do Vale do Rio dos Sinos

Ciências Exatas e Tecnológicas
Av. UNISINOS, 950. S̃ao Leopoldo, RS, Brasil, 93022-000

{crjung,schramm}@exatas.unisinos.br

Abstract

The problem of detecting rectangular structures in im-
ages arises in many applications, from building extraction
in aerial images to particle detection in cryo-electron mi-
croscopy. This paper proposes a new technique for rect-
angle detection using a windowed Hough Transform. Ev-
ery pixel of the image is scanned, and a sliding window is
used to compute the Hough Transform of small regions of
the image. Peaks of the Hough image (which correspond
to line segments) are then extracted, and a rectangle is de-
tected when four extracted peaks satisfy certain geometric
conditions. Experimental results indicate that the proposed
technique produced promising results for both synthetic and
natural images.

1. Introduction

The problem of rectangle detection arises in several prac-
tical applications. For example, an important problem in
cryo-electron microscopy is automatic detection of parti-
cles with rectangular or circular shapes [24, 25]. Aerial im-
agery is utilized for semi-automatic and automatic detec-
tion of rectangular structures, such as vehicles [22, 14] and
buildings [7, 15, 8]. Rectangle detection may also be use-
ful for recognizing license plates of cars in images or video
sequences [5].

Most rectangle detection techniques reported in the liter-
ature are based on edge and line primitives. Next, we briefly
describe some of these techniques.

Lagunovsky and Ablameyko [10] proposed a rectan-
gle detection technique based on line primitives. First, lin-
ear primitives are extracted, then line segments, which are
grouped in straight lines. The length and orientation of these
straight lines are compared and used to detect quadrangles,
that are further approximated by rectangles.

Lin and Nevatia [12] studied the problem of rectan-
gle/parallelogram detection in aerial images. Their tech-

nique is based on line detection, and selection of line seg-
ments within a range of values (determined by maximum
and minimum building sizes). Given an initial line segment,
anti-parallel lines are searched. A pair of anti-parallel lines
is used to define a search region, where the remaining two
sides of the rectangle are searched.

Tao et. al [20] proposed a primitive-based approach for
extracting rectangular buildings from aerial images. In their
approach, edge elements are found and linear elements are
extracted using a splitting arithmetic. Start-point, end-point
and orientation of each linear element are used to detect par-
allel lines, and pairs of parallel lines are used to form rect-
angular primitive structures. Finally, these primitives are
merged to form rectangles.

Zhu et. al. [25, 23] used a different approach to detect
rectangular particles in cryo-electron microscopy images,
by proposing aRectangular Hough Transform(RHT). If the
sides of a rectangle are known, the RHT uses a 2-D accumu-
lator array to detect the center and orientation of the rectan-
gle. This method is fast and produces good results, but only
works if all rectangles in the image have the same dimen-
sions, and these dimensions must be known.

In this paper, we explore geometric characteristics of a
rectangle in the domain of the Hough Transform [3], and
such characteristics are used for rectangle detection directly
in the Hough space. The proposed technique works for rect-
angle with unknown dimensions and orientations, and does
not require the extraction and/or grouping of linear seg-
ments (i.e., it is applied directly to the edge map).

The remainder of this paper is structured as follows. In
the next Section, the Hough Transform is briefly explained.
In Section 3, the image of a rectangle through the Hough
Transform is analyzed. Section 4 describes the proposed
technique in details, and Section 5 shows some experimen-
tal results. Concluding remarks are given in Section 6.



2. The Hough Transform

The Hough Transform (HT) is a powerful method for
detecting linear structures in images. Duda and Hart [3] ex-
plored the fact that any line on thexy plane can be described
asρ = x cos θ + y sin θ. In this representation,ρ is the nor-
mal distance andθ is the normal angle of a straight line,
as shown in Figure 1. Applying the Hough Transform to a
set of edge points(xi, yi) results in an 2D functionC(ρ, θ)
that represents the number of edge points satisfying the lin-
ear equationρ = x cos θ + y sin θ. In practical applications,
the anglesθ and distancesρ are quantized, and we obtain
an arrayC(ρk, θl). The local maxima ofC(ρk, θl) can be
used to detect straight line segments passing through edge
points.
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Figure 1. Representation of a straight line in
Hough parameters ρ and θ.

Several variations of the HT have been proposed since
its original formulation, in order to reduce computational
cost or improve the accuracy of line detection. Examples
of such techniques are the Probabilistic HT [9], Random-
ized HT [21], Hierarchical HT [16] and Progressive Prob-
abilistic HT [13]. Ballard [1] developed the Generalized
Hough Transform (GHT), that can be used to detect arbi-
trary shapes (including rectangles). However, a generic rect-
angle has 5 degrees of freedom: two coordinates of the cen-
ter, width, height and orientation. This would lead to a 5-D
accumulator array, demanding memory and computational
power.

Some work have been done about shape description in
the Hough Space. Rosenfeld and Weiss [17] proved that a
convex polygon is uniquely determined by the peaks of its
HT (in fact, these peaks form the convex hull of the poly-
gon). However, we face a different problem: detecting rect-
angles in images containing several objects. Given the HT
of an image, we want to detect patterns in the Hough Space
that can characterize rectangles. For that purpose, we note
that a rectangle has specific geometric relations, that can be
detected directly in the Hough Space.

3. Rectangle Patterns in the Hough Space

Let us consider a rectangle with verticesP1 = (x1, y1),
P2 = (x2, y2), P3 = (x3, y3) andP4 = (x4, y4), with P1P2

andP3P4 being parallel sides with lengtha, as well asP2P3

andP4P1 with lengthb. Also, let us assume that the origin
of the coordinate system is located in the center of the rect-
angle, as shown in Figure 2.
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Figure 2. A rectangle centered at the origin of
the coordinate system.

The image of this rectangle in the Hough Space in shown
in Figure 3. As expected, there are four peaks, labelled as
H1 = (ρ1, θ1), H2 = (ρ2, θ2), H3 = (ρ3, θ3) andH4 =
(ρ4, θ4), that correspond to the four sides of the rectangle
(P2P3, P1P4, P3P4 andP1P2, respectively).
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Figure 3. The HT of a rectangle centered at
the origin.

It can be observed that these four peaks satisfy specific
geometric relations:



1. They appear in pairs: the first one is formed by peaks
H1 andH2, at θ = α1; the second one is formed by
peaksH3 andH4, atθ = α0.

2. Two peaks belonging to the same pair are symmetric
with respect to theθ axis, i.e.,ρ1 + ρ2 = 0 andρ3 +
ρ4 = 0.

3. The two pairs are separated by∆θ = 90◦ in theθ axis,
i.e., |α1 − α0| = 90◦.

4. The heights of two peaks within the same pair are ex-
actly the same, and represent the length of the respec-
tive line segment, i.e.,C(ρ1, θ1) = C(ρ2, θ2) = b and
C(ρ3, θ3) = C(ρ4, θ4) = a.

5. The vertical distances (ρ axis) between peaks within
each pair are exactly the sides of the rectangle, i.e.,
ρ1 − ρ2 = a andρ3 − ρ4 = b.

It should be noticed that these relations may not be true
if there are other structures present in the image, because
edges related to noise or other structures have a global in-
fluence in the Hough image. In particular, relations 1,2 and
3 are more robust in the presence of other structures, and are
strongly explored in this work for rectangle detection in im-
ages. Next, the proposed algorithm is explained.

4. The Proposed Algorithm

The basic idea of the proposed algorithm is to search ev-
ery pixel (x, y) of the image, compute the HT of the edge
image in a certain neighborhood centered at(x, y), find rel-
evant peaks of the HT, and use the conditions described in
the previous Section to determine if there is a rectangle cen-
tered at(x, y). These steps are described in details next.

4.1. Computing the Windowed Hough Transform

Let us consider a pixel(x0, y0), and a neighboring re-
gion centered at(x0, y0). This region must be large enough
to contain all the edges of any possible rectangle centered
at (x0, y0). On the other hand, it should be as small as pos-
sible, to avoid edges belonging to other structures (and/or
noise-related edges).

A suitable search region is a ring with internal diameter
Dmin and external diameterDmax. The choice of these pa-
rameters is made based on the sizes of rectangles to be de-
tected:Dmin should be approximately equal to the smallest
size of any possible rectangle, andDmax should be approxi-
mately equal to the largest diagonal of any rectangle present
in the image. Such choice of parameters ensures that any
rectangle in the image will have all of its edges within the
search region (when the center of the search region matches
the center of the rectangle).

For example, let us consider the synthetic image illus-
trated in Figure 4, with256 × 256 pixels. The largest pos-
sible diagonal belongs to the rectangle on the top of the im-
age, and is used to determine the external diameter of the
search regionDmax = 60 pixels. The smallest possible
side belongs to the rectangle in the middle-left portion of
the image, leading to an internal diameterDmin = 13 pix-
els. Figure 5 shows the edge map of synthetic image com-
puted with Canny’s operator [2] and the choice of parame-
tersDmin andDmax. It also illustrates an example of the
ring-like search region.

Figure 4. Synthetic image containing several
geometric objects.
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Figure 5. Edge map of synthetic image and
size of search region.

OnceDmin andDmax are chosen, the HT is computed



using quantized orientationsθ and distancesρ. As noticed
by Shen and Wang [19], discretization stepsdθ anddρ de-
pend on the size of the input image. For large images,dθ

anddρ must be small (consequently, the resulting Hough
image would be large). In this work, Furukawa and Shina-
gawa’s idea [4] was adapted. For an image having width
W0 and heightH0, they computed the Hough image with
width 4W0/3 and height4W0/3. In our case, we can con-
sider thatW0 = H0 = Dmax, which would lead to dis-
cretization steps given by1:

dθ =
3π

4Dmax
, dρ =

3

4
(1)

4.2. Finding Local Maxima of the HT

The following step is to detect line segments within the
search region, by extracting peaks of the HT. SinceC(ρ, θ)
represents the number of edge points satisfying the linear
equationρ = x cos θ + y sin θ, a simple way to find peaks
of the HT is to extract all points satisfyingC(ρ, θ) ≥ TC

(i.e., all straight lines withTC or more pixels would be re-
trieved). However, noise and other structures can degrade
the accuracy of such peak estimate [11, 6].

In fact, peaks can be detected more robustly by analyz-
ing butterflypatterns that arise in the vicinity of peaks [11].
In this work, a simplified version of the butterfly evaluator
proposed by Furukawa and Shinagawa [4] was used to en-
hance the Hough image. Such enhanced image is given by:

Cenh(ρ, θ) = hw
C(ρ, θ)2

∫ h/2

−h/2

∫ w/2

−w/2

C(ρ + y, θ + x)dxdy

, (2)

whereh andw are the width and height of a rectangular re-
gion used for this enhancement. Sinceρ andθ are quantized,
the integral defined in Equation (2) is computed through a
convolution with a rectangular mask.

Finally, local maxima of the enhanced imageCenh(ρ, θ)
satisfyingC(ρ, θ) ≥ TC are stored as peaks. It should be
noticed thatTC is related to the internal diameterDmin. In
fact, a suitable choice isTC = 0.5Dmin (such that line seg-
ments with less than half of the minimum rectangle size are
ignored).

To illustrate this procedure for locating local maxima of
the HT, let us consider the test region shown in Figure 5
(this region is centered at pixel (139, 119), which is marked
with a square). Figure 6(a) shows the HT of the test region,
and Figure 6(b) shows the enhanced HT with local max-
ima marked with crosses. Six local maxima were retrieved,
and labelled asH1, H2,...,H6.

1 it should be noticed that discretization steps are inversely proportional
to dimensions of the Hough image
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Figure 6. (a) Hough Transform of the test re-
gion. (b) Enhanced Hough Transform and de-
tected peaks.

4.3. Detecting Rectangle Patterns

Let H1 = (ρ1, θ1), H2 = (ρ2, θ2),..., Hm = (ρm, θm)
denote them peaks ofCenh(ρ, θ). The next step is to find
four peaks satisfying the conditions listed in Section 3.

For that purpose, all peaks are scanned, and peaksHi,
Hj are paired together if they satisfy the following condi-
tions:

∆θ = |θi − θj | < Tθ,
∆ρ = |ρi + ρj | < Tρ,

|C(ρi, θi) − C(ρj , θj)| < TL
C(ρi,θi)+C(ρj ,θj)

2 .

(3)

Tθ is an angular threshold, and determines if peaksHi and
Hj correspond to parallel lines (i.e.θi ≈ θj). Tρ is a dis-
tance threshold, and is used to check if the lines related to
Hi andHj are symmetric with respect to theθ axis (i.e.
ρi ≈ −ρj). TL is a normalized threshold, and determines
if line segments corresponding toHi andHj have approxi-
mately the same length (i.e.C(ρi, θi) ≈ C(ρj , θj)).

Each pair of peaksHi andHj satisfying Equation (3)
generates an extended peakPk = (±ξk, αk), where

αk =
1

2
(θi + θj) and ξk =

1

2
|ρi − ρj |. (4)

It should be noticed thatPk encodes information about both
peaksHi andHj , becauseθi ≈ αk, θj ≈ αk, ρi ≈ −ξk and
ρj ≈ ξk.

The final step of the proposed technique is to compare all
pairs of extended peaksPk andPl, and retrieve those that
correspond to orthogonal pairs of parallel lines (hence, re-
lated to a rectangle). A rectangle is then detected if:

∆α = ||αk − αl| − 90◦| < Tα, (5)

whereTα is an angular threshold that determines if pairs of
linesPk andPl are orthogonal.

Finally, the vertices of the detected rectangle are ob-
tained through the intersection of the two pairs of parallel
lines. The orientation of the detected rectangle is given by
αk, and the sides are given by2ξk and2ξl.



For instance, let us consider the coordinates and the
heights of the peaks shown in Figure 6(b):

H1 = (−7.76,−65.37◦), C(H1) = 14,
H2 = (−11.93,−10.42◦), C(H2) = 12,
H3 = (13.07,−8.53◦), C(H3) = 14,
H4 = (23.07, 44.53◦), C(H4) = 14,
H5 = (8.9, 78.60◦), C(H5) = 16,
H6 = (−9.43, 78.66◦), C(H6) = 15.

SettingTθ = 3◦, Tρ = 3 andTL = 0.4, we can observe that
peaksH2 andH3 satisfy conditions (3), and thus generate
P1 = (±12.50,−9.47◦) according to Equation (4). Peaks
H5 andH6 also satisfy conditions (3), and generateP2 =
(±9.17, 78.63◦).

SettingTα = 3◦, it can be observed that extended peaks
P1 andP2 satisfy condition (5). Thus, a rectangle centered
at pixel (139, 119) is detected. The vertices of such rectan-
gle are the intersections of straight lines corresponding to
the extended peaksP1 andP2. This rectangle has a tilt an-
gle of −9.5◦ with respect to thex axis, with sides of ap-
proximately25.0 and18.3 pixels. Exact values (measured
directly from the original image) are−9.5◦, 24.3 and17.5
pixels, respectively.

4.4. Removing Duplicated Rectangles

The procedure described so far can efficiently detect
rectangles with different orientations, center and sides.
However, thresholdsTθ, Tρ, Tα andTL may generate du-
plicated rectangles for neighboring centers. For example,a
region with internal diameter of 13 pixels and external di-
ameter of 60 centered at pixel (139, 119) was used to detect
a rectangle centered at that pixel. Sliding the center of this
region in a5× 5 neighborhood around pixel (139,119) also
leads to seven detections of the same rectangle with a slight
difference in the center, sides and orientation, as shown in
Figure 7. Black dots indicate centers of detected rectangles.

Figure 7. Multiple detection of the same rect-
angle.

One possible solution to prevent detection of duplicated
rectangles would be to set tighter (lower) thresholds for con-
ditions (3) and (5). However, this could lead to misdetection
of actual rectangles.

A more adequate solution is to compute an error mea-
sure for each detected rectangle, and to choose the rectan-
gle for which the error is the smallest. In fact, each rectangle
is represented by a pair of extended peaksPk andPl, and
there is an orthogonality error measure∆α given by con-
dition (5). Furthermore, each of these extended peaks was
obtained by comparing a pair of regular peaksHi andHj ,
and there are parallelism and distance error measures∆θ
and∆ρ, according to conditions (3). Thus, there are five er-
ror measures related to each rectangle:∆θk, ∆θl, ∆ρk, ∆ρl

and∆α. The proposed error measure is given by:

E(Pk, Pl) =
√

a (∆θ2
k + ∆θ2

l + ∆α2) + b (∆ρ2
k + ∆ρ2

l ),

(6)
wherea andb are weights for angular and distance errors,
respectively. It should be noticed that units for these error
measures are different:∆θ and ∆ρ are given in degrees,
and∆ρ in pixels. Visually, a difference of one pixel is more
significant than a difference of one degree. To compensate
such visual difference, the weight for distance error should
be larger (typical values area = 1, b = 4).

Equation (6) was applied to all seven rectangles depicted
in Figure 7, and the error measure was minimized for the
rectangle shown in Figure 8.

Figure 8. Choice of the detected rectangle
with minimal error.

5. Experimental Results

The proposed technique for arbitrary rectangle detection
was tested in both synthetic and natural images. For exam-
ple, the result of applying the proposed technique to the syn-
thetic image of Figure 4 is shown in Figure 9. As it can be
noticed, all rectangles were successfully detected (the pa-
rameters used were:Tθ = 3◦, Tρ = 3, TL = 0.4, and
Tα = 3◦).



Figure 9. Rectangles detected for synthetic
image.

The result of adding spurious edges to Figure 5 is shown
in Figure 10 (70% edges were artificially added at ran-
dom positions). It can be noticed that all rectangles were
still detected using the proposed method. However, if noise
contamination is too large, spurious edges may introduce
false peaks in the Hough image (hence, small line segments
may not be detected or line segments due to noise could be
wrongly detected).

Figure 10. Noisy edge map (70% of new edge
pixels) of synthetic image and detected rect-
angles.

An example of license plate detection is shown in Fig-
ure 11. In Figure 11(a), the original image (240 × 320 pix-
els) and the detected license plate are shown. The corre-
sponding edge map obtained with Canny’s operator is il-

lustrated in Figure 11(b). The parameters used for this im-
age were:Dmin = 14, Dmax = 60, Tθ = 3◦, Tρ = 3,
TL = 0.25, andTα = 3◦.

In several applications, not every pixel of the image is a
valid candidate for center of a rectangle. For exemple, let
us consider the aerial image (256 × 256 pixels) shown in
Figure 12(a). There are several rectangular buildings, with
bright rooftops. Clearly, the only candidates for centers of
rectangles are bright pixels. To reduce the search space,
a binary image was constructed by thresholding the origi-
nal image so that pixels below intensity 150 were removed.
Morphological erosion was then applied to obtain only the
interior of candidate buildings, as shown in Figure 12(b).
Remaining pixels were used as candidate centers for the
proposed technique, using the edge map illustrated in Fig-
ure 12(c) (this edge map was obtained by applying a denois-
ing method [18] followed by Canny’s algorithm). Detected
rectangles overlaid to the denoised image are shown in Fig-
ure 12(d) (such rectangles were produced usingDmin = 9,
Dmax = 29, Tθ = 5◦, Tρ = 2, TL = 0.5, andTα = 5◦).
Most of building were successfully detected. However, the
fourth building from left to right at the top of the image was
not segmented. Also, there was some confusion in the de-
tection result for aligned buildings at the bottom of the im-
age. This happens because parallel sides of adjacent build-
ings also introduce aligned peaks in the HT, and some of
them may correspond to valid rectangle hypothesis (accord-
ing to conditions (3) and (5)).

In fact, the proposed method can produce false detec-
tion results when aligned rectangles are close to each oth-
ers, as depicted in Figure 13(a). It can be noticed that a rect-
angle was falsely detected in the middle of the image. Fig-
ure 13(b) shows a close up of the edge map around this rect-
angle, where four line segments can be observed. More pre-
cisely, there are two pairs of parallel line segments, generat-
ing two pairs of peaks in the HT (Figure 13(c)) that satisfy
conditions (3) and (5). If the average graylevel of the de-
sired rectangles is known, such false rectangles can be eas-
ily removed by comparing the intensity inside the rectangle
with the expected average grayvalue.

6. Conclusions and Future Work

In this work, a new procedure for rectangle detection
based on a windowed Hough Transform was presented. A
sliding window is used to compute the HT of small por-
tions of the image, and peaks are extracted. Geometric con-
straints are used to determine the existence of a rectangle
centered at the origin of the sliding window.

Preliminary results indicate that the proposed method
can successfully detect rectangles with varying sizes and
orientations, showing good performance when applied to
natural and synthetic images (as long as an efficient edge



(a) (b)

Figure 11. (a) Original image and detected license plate. (b) Edge map.

(a) (b)

(c) (d)

Figure 12. (a) Original aerial image. (b) Search space for centers of rectangles. (c) Edge map. (d) De-
noised image and detected rectangles.

detector is used). It is more flexible than the technique used
by Zhu et al. [25], with a computational complexity far be-
low the Generalized Hough Transform (GHT) [1].

Future work will concentrate on combining this edge-
based method with region-based approaches to further in-
crease accuracy in rectangle detection, and reduce false de-
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Figure 13. (a) Image and detected rectangles.
(b) Close up of edge map around falsely de-
tected rectangle. (c) Hough Transform of Im-
age (b).

tection results. We also intend to extend this work for color
(or multi-band) images.
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