Curvature and Orientation Estimation by Neuronal Structures
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Abstract. It is presented a simple model of curvature and orientation estimation by neuronal networks where a
pair of neurons is used to approximate the partial differential operators needed for curvature and orientation
estimation. The influence of neuronal morphometry in the estimation of curvature and orientation is investigated
and discussed. In addition, the biological plausibility of the model is discussed, and simulation results are
presented along a sequence of increasing plausibility and sophistication. Steerable filters are considered as a

means to increase the model efficiency.

1 Introduction

The representation of the curves such as shape contours is
an important problem in computer vision because of the
special human ability to recognize objects represented in
terms of their 2D contours, even without information
about depth, color or texture. Because of its special
importance, the human perception of curvature and
orientation have been investigated for a long time [2, 11,
16], but no definitive conclusion about specific operators
for curvature estimation has been reached. As far as
orientation is concerned, there are conclusive results
indicating what kind of cells and respective receptive
fields are involved in this task. Some studies have
indicated that the performance of curvature discrimination
is influenced by other features such as orientation [9, 14,
17], length [8, 17, 18], blur and contrast [19]. While there
are studies suggesting the existence of curvature detectors,
i.e. neurons specific to curvature estimation [1, 15, 17],
other studies suggest that curvature is processed by
integrating information about different orientations [2,
20]. Lehky and Sejnowski [13] constructed a neural
network model to determine curvature of simple
geometric surfaces, incorporating only the gray level
image of the surface. Their model uses a three-layer
network trained by backpropagation.

In order to investigate a possible model to perform
curvature and orientation estimation, we propose an
approach based on partial differential operators that
presents biological plausibility. A preliminar description
of the model has been presented in references [5, 7]. In
this work, we present an extension of the model to allow
biologically more realistic simulations and the use of
steerable filters to increase the efficiency of the model.
Also presented are some neuromorphometric features to
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evaluate the relation between neural shape and function,
specifically in curvature and orientation estimation.

2 Curvature and Orientation Estimation Model

The model is based on partial derivative operators, ¢, =
J¢/dx and ¢, = d¢/dy from which the gradient Equation 1
and curvature Equation 2 are obtained.
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We use as a stimuli a closed contour extended into a
surface ¢(x, y) in such a way that internal points are
represented as one and external points as zero. The
Equation 2 provides the 2D curvature along each level
curve of the surface. The orientation was considered as the
angle formed by the gradient vector and the positive x-axis
direction, counterclockwise, ranging between 0 and =
radians.

We proposed a neural network structure capable of
estimating the partial derivative operators by taking into
account the electrotonic decay' along the neurons
dendrites. In this model, all synaptic efficiencies are
similar, in such a way that their effective weights are
determined by the electrotonic decay, approximated by an
exponential, which is the steady-state solution of the
passive transmission cable [12]. Therefore, the further the
synapse is from the soma, smaller is its influence on the
neuron discharge. The efficiency of the synapse is given

! electrotonic decay is the decrease of synaptic potential
along the dendritic process .



by €= e_"/a, where s is de arc length distance between

the synapse and the soma.

The basic idea in this model is to use de planar neural
shape as a correlation mask (template), so that the activity
of the cells are determined by the internal product between
the weights template and the input stimulus (image).
When the mask is a Gaussian smoothed partial derivative
operator (d/dx ), as illustrated in the Figure 1(a), the result
of the correlation between the mask and the image is a
scalar field corresponding to ¢,. The Gaussian smoothing
is used to reduce the noise generated by the sampled
representation of the stimulus.

As it can be seen in the Figure 1(a), it is necessary
both positive and negative weights to approximate the
Gaussian smoothed partial derivative mask. We
considered two neurons, one representing the excitatory
synapse and another the inhibitory synapse. A small
distance § separates these two neurons.

(a)

(b)

Figure 1 - (a) Gaussian smoothed g/dx mask; (b)
difference of two exponentials mask.

The weights of the neurons of the mask, defined by
electrotonic decay along their dendrites are given as:

E,,<x,y)=ﬂexp{~$\/x1+yz} 3)

where 8 is a proportionality coefficient and a is the
parameter that controls the width of the exponential.

Leaving the neurons aside, we can construct a mask
considering the differences of two exponentials (DOE),
Figure 1(b), given by the following equation:

DOE, ;(x.y)= B exp[—g (H?E)lﬂ-zJ-exp[_& (X_%)’H.z” @)

As it will be illustrated in the paper, the correlation
between this mask and the image can approximate the
partial derivative @, of the image.

In the next section we present the results of
simulations starting with the use of DOE mask and
following with a sequence of increasingly more
biologically plausible extensions.
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3 Neuromorphometric Features

The study of relation between cell shape and function on
neural information processing [4, 6, 7] is a particularly
important issue that has received relatively little attention.
This section presents 4 morphological features of the cell
that reflect its geometry and important characteristics
affecting curvature and orientation estimation.

3.1 Complexity

The complexity of the shape can be measured by fractal
dimension. First we obtain the dilation of the shape by
using Minkowski sausage method. Next, the log-log graph
of the Minkowski sausage radius against the area of the
dilation is obtained, and the fractal dimension is
approximated by 2-s, where s is the slope of the log-log
plot. Here an improved method described in reference [3]
was adopted in order to compute the fractal dimension.

3.2 Curvature

A morphologically important measure of a cell is the
curvature of their processes. The curvature is calculated at
each contour point of the processes, in such a way that a
small curvature value indicates the local straightness of
the process.

3.3 Radiality

Radiality measures how much the processes of the cell are
radially organized around the center of mass of the soma.
For each contour point of the process the angle between
the tangent vector in that point and the radial direction is
calculated, see Figure 2. So, the smaller the angle, the
more locally radial that point is.

Figure 2 — Geometric construction considered for the
radiality measure.

3.4 Radial Symmetry

A measure that quantifies the radial distribution of the cell
processes is the radial symmetry. The angle between the
segment (which connects a point of the process and the
center of mass of the soma) and the positive x-axis is
calculated. A uniform distribution of these angles between
0 and 2w radians indicates that the processes are radially



distributed and, consequently, that the cell presents radial
symmetry.

4  Simulations

We used the parameter 8= 1 and searched for parameters
6 and « that best approximate the partial derivative
operators. The parameter § was varied with step 1 and the
parameter « with step 0.1, and the parameters allowing
the minor overall error (E), given by Equation 5, were
identified.

E:I;-ﬂc -¢| )

Observe that M is the number of points where the

standard curvature (C) is not null, and C is the
approximated curvature. The standard and approximated
curvature and orientation are obtained by using the sian
smoothed partial derivative mask and the DOE mask,
respectively.

The best parameters found for image size 513x513,
used in these simulations, are = 14 and @ = 2.5.

4.1 Curvature and orientation estimation using the
standard partial derivative operator

Figure 3(a) presents the original synthesized shape (curve)
from which the curvature and orientation is to be
calculated. Figure 3(b) illustrates the shape filled to
produce the surface. The curvature obtained by applying
the Gaussian smoothed partial derivative operators (9/0x
and 9/dy) is shown in Figure 3(c), and the Gaussian

smoothed partial derivatives along x (¢,) and y (¢,) are
shown in Figures 3(d) and 3(e). In the Figure 3(c), 3(d)
and 3(e), a line is superposed to indicate the position of
the curve. In the Figure 3(c) the black and white colors
indicates high curvature with opposite sign. The curvature
of interest is that corresponding to the points along the
original contour. The used image size is 513x513 in all
simulations, unless when specifically indicated.

(®)
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(d)
Figure 3 — (a) original shape; (b) filled shape; (c)

curvature estimated by Gaussian smoothed 9/dx
operator; (d) scalar field ¢, ; (e) scalar field ¢,.

4.2 Curvature and orientation estimation using the
DOE operator

Figure 4 presents the results obtained by using the DOE
mask with =1, 6 = 14 and o = 2.5 and respective
histograms. The error histogram is generated by taking
into account the differences between the results obtained
by the use of Gaussian smoothed partial derivative
(standard) mask and the DOE mask, at the points where
the standard curvature is not null.
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Figure 4 — (a) estimated curvature; (b) curvature error

(pixel'l) histogram; (c) ¢, ; (d) orientation error (radians)
histogram.
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In the following simulations, the mask was centered
at the nodes of an orthogonal lattice with parameter d.
Hence, when d = 1 the mask is applied at each pixel of the
image.

In the first series of simulations using the DOE mask
reflecting the neural shape, the same cell was used to
compose all masks, in order to investigate the influence of
the cell morphology over curvature and orientation
estimation.

Figure 5 illustrates 4 synthesized cells with
dimension 81x81 used in this first series of simulations.
The varied cell shapes were used to verify the influence of
the cell geometry in the estimation. The features
previously presented in section 3 were obtained from each
of the cells in order to characterize its geometry. Figure
6(a) shows the complexity of the cells; Figure 6(b) and (c)
present the mean and the standard deviation of the cell
curvature and the cell radiality, respectively. The mean is
represented by circle and the standard deviation by bar.
Figure 6(d) depicts the standard deviation of the histogram

of cell radial symmetry. The Figures 7(a)-(d) shows the
histograms of curvature estimation error of the 4 cells and
the Figures 7(e)-(h) shows the histograms of orientation
estimation error calculated in radians for the 4 cells. Both
curvature and orientation were obtained with d = 1.

Analyzing the results it is possible to verify that a
complex and radially symmetric cell allows the curvature
and orientation estimation to be performed in a more
accurate fashion.

(a) (®) (©) ()]
Figure 5 — Synthesized cells used to investigate the
influence of its morphometry in the curvature and
orientation estimation; (a) Cell 1; (b) Cell 2; (¢) Cell 3; (d)
Cell 4.
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Figure 6 — Morphometric measures of the cells; (a) cell complexity; (b) cell curvature; (c) cell radiality; (d) cell radial
symmetry.
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Figure 7 —Histogram of curvature estimation error obtained by Celll (a), Cell2 (b), Cell3 (c), Cell4 (d) and histogram of
orientation estimation error obtained by Celll (e), Cell2 (f) , Cell3 (g) and Cell4 (h).
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The next series of simulations consider 8 synthesized
cells with dimension 81x81, illustrated in the Figure 8.

Figure 8 — Synthesized cells used in the DOE masks.

Now we consider randomly chosen cells of the
Figure 8 to compose both the positive and negative
receptive fields of each DOFE mask used for estimating the
partial derivatives. Figure 9 shows the results of this
simulation using d = 1.
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Figure 9 — (a) estimated curvature; (b) curvature error
(pixel'l) histogram; (c) ¢, ; (d) orientation error (radians)
histogram.

In Figure 10 we can visualize the results obtained by
using the DOE mask in the same conditions as before, but
with d = 3. Here the mask is centered at a regular grid of
distance 3. In the cases as this in that the mask is not
applied centered at all pixels, the error is calculated only
in the pixels where the mask is centered.
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Figure 10 — (a) estimated curvature; (b) curvature error
(pixel'l) histogram; (c) ¢, ; (d) orientation error (radians)
histogram.

The results obtained by using randomly selected
different cells to compose the positive and negative parts
of the DOE mask, with d = 1, is illustrated in the Figure
11. A degradation of the curvature and orientation
obtained is verified, caused by the misbalance between the
different cells composing the DOE mask. Even so, the
results are still reasonable.
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Figure 11 — (a) estimated curvature; (b) curvature error
(pixel") histogram; (c) ¢ ; (d) ¢, ; (e) orientation error
(radians) histogram.




4.3 Curvature and orientation estimation wusing
randomly positioned cells with DOE operator

Thus far, the simulations started with Gaussian smoothed
standard partial derivative masks and proceeded to the
different cells composing each of DOE masks, increasing
the biological plausibility. In all simulations the mask was
centered at a regular grid of distance d. Proceeding with
the increase of biological plausibility, the next simulation
considers random placements of cells through the input
image, as illustrated in the Figure 12. First, a cell is
randomly selected and another three cells of its
neighborhood are chosen to form the pair of DOE to
approximate 9¢/dx and 9¢/dy. To form a good pair of

DOE, the cells need to satisfy the following criteria:

e The distance between two cells of each DOE
must be as close as possible to §;

The two pairs of DOE must form an angle the
closest as possible to orthogonal angle;

The centers of the DOE masks must be as close
as possible.

These three criteria were considered to choose the
best four cells to compose the pair of DOE masks,
following a function that is a linear combination of the
measures that express the criteria. Figure 13 shows the
results of using randomly positioned cells in a 257x257
input image. The parameters used for these image size are
d=6and a=14.

Although we can verify some degradation in the
results, the model still is able to estimate curvature and
orientation.

97-6-5-4-3-2-1 0123456867
error
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Figure 13 - (a) estimated curvature; (b) curvature error
(pixel") histogram; (c) ¢, ; (d) orientation error (radians)
histogram.

(a)

4.4 Curvature and orientation estimation using
randomly positioned cells with DOE operator and
steerable filters

Estimating the curvature and orientation in this way, i.e.
by using randomly positioned cells, the angle formed
between the two DOE masks may not be orthogonal.
However, it is possible to use steerable filters [10] to
improve the results.

Steerable filters are a class of filters that can
synthesize an arbitrary oriented filter from linear
combination of the basic filters. In this case, we have the
partial derivative ¢, and a derivative in the direction 8
other than 90°, and we want to obtain ¢, orthogonal with
¢, as illustrated in the Figure 14.

¢ ¥ ¢9
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Figure 14 - The basic geometric construction used in
order to improve the curvature estimation.

Starting from the steerable filter equation presented
in the Equation 6, we obtain the Equation 7.

¢, =cos(6)¢, +sin(@)¢, (6)
1 1

= - 7

sin(0)¢” tg(9)¢x N

Using the Equation 7 and assuming that another
cell is receiving the inputs (¢ and ¢,) with the respective
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sin(@) tg(6)

the Figure 15 are obtained, considering the same
parameters used at former simulation.
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Figure 15 — (a) estimated curvature; (b) curvature error
(pixel") histogram; (c) @, ; (d) orientation error (radians)
histogram.

(©)

The use of steerable filters has been verified to
sensibly increase the performance of the model so much
for curvature as for orientation.

As previously mentioned, the divergent of
normalized gradient, obtained from Gaussian smoothed
partial derivative operators, was used to be the
comparison pattern for curvature and orientation
estimation. To validate the curvature estimation obtained
with this operators, the error histogram shown in Figure
16 is considered for comparing the curvatures obtained
with these operators and the analytical curvature in the
points of the considered curve of the 513x513 image. The
analytical values were quantized taking the medium value
of the curvatures, in order to allow comparisons with the
digitized curvature.
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Figure 16 - Error histogram of pattern curvature in
relation to the analytical curvature.
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5 Conclusions

The presented model is based on the difference of two
exponentials, implemented in terms of a pair of neural
cells. The weights are defined in terms of electrotonic
decay along the dendrites of the cells, and are
consequently modeled by a decreasing exponential
function of the arc length between the synapse and the
soma.

The models progressed according to a sequence of
increasing biological plausibility, and we verified that the
accuracy of the curvature and orientation estimation was
verified to decrease along this sequence. Even so, the
model can still give a reasonable indication about
curvature and orientation of the presented stimulus. It is
also been verified that the use of steerable filters increased
the efficiency of curvature and orientation estimation. The
obtained results also imply that a complex cell with
radially distributed processes is more suitable for
curvature.

In spite of being a computational model based in a
mathematical equation, electrophysiological aspects like
electrotonic decay and a natural organization of the cells
with random distribution have been incorporated to make
the model more biologically realistic capable of
reasonable estimation.
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