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Abstract.

We present a new algorithm for shape estimation, using both brightness and brightness

gradient as input data. Our algorithm is an improvement of the recently introduced Green’s function
approach to shape-from-shading (GSFS). In GSFS, we assume that the single brightness image will be
matched to a second image through a uniform disparity field, and solve for the matching image via
Green’s function. When a linear expansion of the reflectance map is considered, the matching image
can be related to surface gradient, leading to a closed-form depth map whose free parameters are easily
estimated. Here we show that the same procedure can be repeated with the gradient image as input; a
second depth estimate thus results which takes into account higher-frequency components of the imaged
surface. Extensive experimentation with synthetic and real images corroborates the advantage of the new

method.

1 Introduction

Shape-from-shading (SFS) is a computer vision tech-
nique which takes a single shading image as input.
In SFS, the goal is to estimate surface orientation, or
surface depth, through the image irradiance equation,
which relates image intensity to surface gradient via
the reflectance map function. Several approaches have
been proposed for SF'S, most of them relying on simpli-
fying assumptions, such as a lambertian imaging model
and known point source illumination; a good survey of
the state of the art, as of 1999, can be found in [1].

Recently, we have introduced a novel SFS al-
gorithm, one which is less dependent on restrain-
ing conditions: the so-called Green’s function shape-
from-shading (GSFS) [2]. GSFS has been inspired
by the disparity-based approach to photometric stereo
(DBPS) [3], a process whereby a pair of photomet-
ric stereo images (monocular images acquired under
different illuminations) is matched to yield a dispar-
ity field similar to those obtaining in stereoscopy (4],
from which a depth map for the imaged surface can be
recovered. The disparities in DBPS arise from the dis-
placement of the irradiance pattern over the scene, due
to the change in illumination direction. As shown in
[5], it is possible, under quite general conditions, to ad-
equately model such displacement as a non-uniform ro-
tation, whose parameters can be found via a structure-
from-motion estimation. DBPS therefore allows sur-
face reconstruction even in the absence of reflectance-
map information.

Similarly to DBPS, the Green’s function SFS is
based on an irradiance conservation equation, which
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we introduce assuming that the input image will be
matched to a second image through a uniform disparity
field. Such equation can be solved via Green’s function,
yielding a matching image in terms of which a closed-
form approximate expression for the surface function
can be obtained. The same structure-from-motion ap-
proach of [5] can then be applied for the estimation of
reflectance map parameters.

The Green’s function SFS thus allows shape re-
covery from input images acquired under loosely con-
trolled conditions, and for unkown reflectance maps.
The algorithm has, nevertheless, a tendency to miss
finer details of the imaged surface, what is probably
due to the fact that it relies on a first-order expansion
of the reflectance map, and that second derivatives of
the surface function are neglected.

In order to improve the performance of GSFS, we
here propose to bring into play the gradient of the
brightness function. The use of the intensity gradient
for shape estimation has recently been advocated by
Zhang and Shah, which incorporated the directional
derivatives as a constraint in an optimization strat-
egy, abandoning the traditional brightness factor [6].
In contrast, we here consider shading and gradient co-
jointly, by showing that the GSFS procedure can be
repeated with the gradient data as input, to yield a sec-
ond surface function estimate. Since this new estimate
is based on a second-order expansion of the reflectance
map, and takes into account the second derivatives of
the depth function, its incorporation leads to a more
faithful representation of the higher-frequency compo-
nents of the scene, as proved by our experiments.
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Fig. 1: Top: Filter G(€) x £/u , Bottom: Filter G(£) x
&/u (Not normalized. Arbitrary vertical scales)

In the following section, we briefly present the
Green’s function approach to SFS. Following that, we
show how to incorporate brightness gradient informa-
tion into the reconstruction. Next, we present and dis-
cuss the experimental results, and conclude with our
final remarks.

2 The Green’s Function SFS

The rationale of the Green’s function SFS can be eas-
ily grasped, but its actual derivation is somewhat in-
volved. In what follows, we restrict ourselves to the
main points in the development, referring the reader
to (2] for the missing details.

We deal with a uniform-albedo surface whose im-
age I; is available, and seek a second image, I3, to
match the first, such that [} (X,Y) = L(X +u,Y +v)
up to second order in the small disparity components,
u and v. Assuming these to be uniform and writing
v = yu, for u # 0, we get the following equation for I,
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A solution for I(z,y + yz), assuming y fixed, can be
found from (3) in the form

L2,y + 72) = / Glo - o)L (2 y + 1a)da', (4)
D

where D, which can be a function of y, is the domain
of interest along z. In (4), G(x —1'), called the Green’s
function, is the solution to the equation
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where 6(-) is Dirac’s delta function [7].
Taking D as the whole real axis (see [2] for remarks
on finite image domains), bounded solutions to (5), for

u > 0, can be found as (Fig. 1)

G(z—1') = { %sin (z;w ) exp {— (%)} z >z
0 r<z
(6)
Now, let us assume that the irradiance function
I;(X,Y) can be adequately expressed, in terms of
surface gradient, through a linear expansion of the
reflectance-map function, of the form

L(X,Y) =ko(Y =y X)+ ki (Y =7y X) P+ ko (Y —vX)Q,
(7
where 57 87
pP= X and Q= w (8)
are the gradient components of the imaged surface,
Z(X,Y). In (7), the parameters ko, k1 and kp are
constant along the lines ¥ = X + 8, for constant
B, a dependence that can be obtained by taking the
reflectance map expansion about local orientations
(Po, Qo) fixed along those lines.
Now, it is easy to show that a coordinate trans-

formation such as (2) reduces equation (7) to the form
Li(z,y +7z) = ko(y) + k1 (v)p(z,y +72), (9)
as long as v = v/u = ka(y)/k1(y), where p = 8Z/0z.

We can thus take equation (9) into equation (4), to
obtain

L@,y +12) = koy) / ~ G(e)de+
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where the change of variables ¢ =
performed.

Since G is normalized to 1 in [—o0, 00], it follows
from (9) and (10) that

z — ' has been

ki(y)p(z,y +vz) = Al(z,y + yz)+

) / TG — Ly 4@ - ), (11)

where AI = I, — I,. Given I, and with I, obtained
through (4), equation (11) represents an integral equa-
tion for p at each domain point. In order to avoid the
need to explicitly solve such equation, we attempt to
rewrite the integral factor there in terms of the differ-
ence image, AI. We start by substituting for p, in the
integrand, from equation (11) itself, now at the coordi-
nate (z — &). After some tedious manipulation, which
at one point involves neglecting the derivative of p with
respect to z, we finally arrive at the approximation

ki(y)p(z,y +vz) = Al(z,y + yo)+
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In the above, [ represents a small integration interval,
chosen on the order of u, while the function G(§) is
given by (Fig. 1)

G(¢) = %exp {—%} cos (5) . (15)

Identifying p as 0Z/0z, and AI, through (3), as
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and then going back to the (X,Y) variables, we easily
get from (12)

Ok (Y —X)Z(X,Y)} =
=0 {I(X, Y) +a()) /Oo0 dEG(E) I (X, Y)} +
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with
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I(X,Y) = uly(X,Y) + Z-OlL(X,Y),

IE(X7Y) = I(X _§)Y _f}'é)a and
Iepg (X,Y) = I(X = (€+ &),V —v(£+€)), (18)
where the operator O is given by
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To first order in u, equation (17) reduces finally
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to
MZ(X,Y) = L(X,Y)+
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where F(-) is a generic single-argument function that
cannot be recovered through our approach.

Except for the overall multiplicative factor, &k (Y —
vX), the above yields an estimate of the imaged sur-
face which depends on the reflectance map parame-
ters only via v = k(Y — vX)/ka(Y — vX). Since



k; and k2 are functions of the arbitrary orientations
(Po(Y = vX),Q0(Y —vX)) about which the linear ex-
pansion of the reflectance map (7) is assumed, we can
use (20), with arbitrary 7 values, to estimate the func-
tion Z'(X,Y) = ki(Y —vX)Z(X,Y), without having
to know the k;’s. Once such function has been ob-
tained, an estimation procedure similar to the one de-
scribed in [5] can be employed to yield k; (Y —vX), thus
allowing the complete recovery of the surface function,
Z(X,Y), as shown next.

Z(X,Y) can be formally written as

UTQ (X, Y)

2(XY) = =11

(21)

where T,(X,Y) stands for the right-hand side of (20),
and where it should be kept in mind that k; is a func-
tion of ¥ — vX.

From such expression, according to [5], we can in-
terpret Ty as the image which would result if the irra-
diance pattern originating I; underwent a rotation by
O = ki(v,1,0)/T,, over the imaged surface, Z(X,Y).
Calling R = (X,Y, Z) the vector position of a point
in Z(X,Y) (given with respect to a coordinate system
with —Z direction along the optical axis), and assum-
ing orthographic imaging projection, the displacement
of the surface irradiance pattern would in this case be

AR=0 x R = (u,v,AZ), (22)

since I (X,Y) is taken into I3(X + u,Y + v), and an
unobservable displacement also results along the op-
tical axis direction. For the above ©, it is easy to
see that (21) is recovered from (22), which also yields
AZ = <k (X + V) /T,.

Now, for small v and v, it is reasonable to assume
that the displacement AR will be perpendicular to the
surface normal, n = (=P,—Q,1)/\/P?>+ Q2 +1, at
each point, which yields AR -n = 0, and thus the
relation

ulz(P +7Q) + ki (X +7Y) =0, (23)
that we can use as a constraint over k;, by introducing
the functional

F= / [ul2(P + Q) + k1 (X +~Y)]?ds, (24)
to be minimized through the standard least-squares
approach.

In (24), s denotes a direction perpendicular to the
lines Y — vX = 3, for 8 a constant, such that k; does
not vary along s, and can thus be taken out of the
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integral. It is also easy to see that we can identify
P+~Q = (P +~Q'")/k: in that equation, where P' =
0Z']8X and Q' = 8Z'/9Y. Thus, if we rewrite F in
terms of (P',Q'), and minimize it with respect to ki,
we finally find

Sl (P +~+Q")]%ds
J(X +7Y)%ds

KAY - X)) = (25)

which completes the estimation of the surface function
as Z(X,Y) =Z'(X,Y)/ki (Y —vX).

3 Introducing the Brightness Gradient

Here we show how the brightness gradient information
can be introduced into the GSFS framework, to im-
prove the reconstruction process. First, we note that
the foregoing development, from equation (1) through
(6), remains unchanged if, instead of the irradiance
function, we work with any combination of its deriva-
tives. Let us consider the particular input

or,  on

LX.Y) =55 +715p

=V - (1,y), (26)
which corresponds to the directional derivative of the
brightness function, along the direction (1,7v). If we
assume a quadratic approximation to the reflectance
map, of the form

L(X,)Y)=ko+kiP+kQ+Fks(P+7Q)%, (27)

where, as in (7), the coefficients k; can be functions
of (Y —~vX), it is easy to see that, in terms of the
variables z and y in (2), the derivative I] would admit |
the expansion

oI

Oz (28)

Ii(z,y +77) = o = k1 (y)p= + 2k3(y)pap,
where p, denotes the partial derivative of p with re-
spect to x.

Now, if we assume that p, varies slowly with z,
such that k1 (y)p, and k3(y)p. can be approximated as
functions only of y, we obtain, by repeating the steps
which led from equation (9) to equation (11),

ki(y)p = AI'+

+K0) [ T G(Ope - £y (e - E)de,  (29)

where k] (y) stands for 2k3(y)ps, and AI' = I} — I},

with I} given by

I}z, y+2) = /0 GO (@€ y+1(e-E)de . (30)



Now, following the reasoning that led from equa-
tion (11) to equation (21), it is easy to find the second
estimate for Z(X,Y), under the form

(31)

where 7’2 is given by the right-hand side of equation
(20), with I replaced by I;. The single free param-
eter, ki, in equation (31), can be estimated through
the same least-squares procedure outlined at the end
of Section 2. It would thus be given by expression (25),

again with 7’2 substituted for Is.

4 Experiments

The reconstructions that we present next have been
obtained by combining the estimates (21) and (31)
through the simple average
I,
+ —=
7).

although we could have used a different u value with
each estimate. For comparison, we will also be show-
ing the reconstructions yielded by the standard GSFS
alone (equation (21)), without the gradient informa-
tion.

As test inputs, we considered images already used
as benchmarks in previous works, such as those in [1]
and in [6] (found at the ftp server eustis.cs.ucf.edu, un-
der the pub/tech_paper/survey directory). Our results
can thus be easily confronted with the ones yielded by
other approaches (in this regard, it should always be
kept in mind that, alone among all others, our algo-
rithm does not require any reflectance map informa-
tion).

The experiments presented here are for the syn-
thetic image Mozart101, and for the real images Man-
nequin, Lennal and Lenna2 (Fig. 2). All reconstruc-
tions have been performed with v = 0, v = 0.05, and
{ = 0.1. No previous segmentation of the input images
was assumed.

The surface functions obtained from Mozart101 -
which is a lambertian rendition of a range map, under
(1,0,1) illumination - are shown in Fig. 3. It is ap-
parent there that the incorporation of the derivative
information allowed a more faithful estimation of the
surface shape, compensating for the irradiance non-
uniformity due to the slanted illumination.

A similar remark can be made regarding the Man-
nequin experiment (Fig. 4). Again, the non-uniform
irradiance (shadow areas) led to distortions in the
standard GSFS estimate. The resulting flat nose and
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(d)
Fig. 2: Input images. (a) Mozart101, (b) Mannequin,
(c) Lennal, (d) Lenna2

(c)

twisted mouth have been fairly corrected in the much
more well-balanced reconstruction through the new al-
gorithm.

Finally, in the two Lenna experiments (Figs. 5
and 6), the combined irradiance-gradient approach al-
lowed a better representation of the finer features of
the model, all but lost in the standard GSFS recon-
struction of Fig. 6.

5 Concluding Remarks

In a previous work [2], we have proposed a new ap-
proach to shape from shading (the GSFS), recasting
the process as the matching of a pair of monocular
shading images, the matching image to be found from
an intensity conservation relation. The shape estimate
thus obtained - given as a closed-form expression for
the depth function (21) - depends on the convolutions
of the input image with two 1D filters, G and G (Fig.
1), which display the familiar structure of a positive-
valued crest sided by a negative depression, charac-
teristic of filters used to model the receptive fields of
channels in the visual pathway (the sum G + G re-
sembles a one-sided DOG - difference of Gaussians -
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Here, we have shown how to improve GSFS, by
taking into account brightness gradient information,
der to better represent the higher frequency com-
ponents of the scene. This has allowed reconstructions

which are more faithful to the finer details of the im-
aged surface, and which are somewhat shielded from

non-uniform irradiance effects, such as those arising
back, the gradient-based estimation becomes more vul-

from self-shadows or slanted illumination. As a draw-
nerable to

binocular fusion of monocular images [3].
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image noise.
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