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Abstract. We show how to use affine arithmetic to represent a parametric curve with a strip tree. The required
bounding rectangles for pieces of the curve are computed by exploiting the linear correlation information given by
affine arithmetic. As an application, we show how to compute approximate distance fields for parametric curves.
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1 Introduction

Strip trees were introduced by Ballard [1] as a multi-
resolution data structure for representing polygonal curves.
The main concept in strip trees is to represent each piece of
the curve by a bounding rectangle that contains the piece.
When this is done in a hierarchical fashion — starting from
the whole curve, subdividing the curve at suitable points,
and going down to individual edges — we get a tree of rect-
angles, each rectangle containing a piece of the curve.

Ballard [1] described how the multi-resolution repre-
sentation provided by strip trees can be used to solve several
practical problems efficiently, including displaying a curve
at a given resolution, intersecting two curves, computing
the length of a curve at a given resolution, testing the prox-
imity of a point to a curve, and testing whether a point is
inside a region bounded by a curve.

The heart of the strip tree representation algorithm is
the computation of a rectangle bounding a piece P of the
polygonal curve. Ballard used the smallest rectangle with a
side parallel to the line segment joining the two endpoints
of P . This rectangle is not necessarily the smallest rectan-
gle containingP , but it is easy to compute and the resulting
strip tree has good performance in practice.

In this paper, we show how to compute a strip tree
representation for a general parametric curve, using affine
arithmetic [2] to find good bounding rectangles. (Figure 1
shows an example of a rectangle covering of a parametric
curve computed with our algorithm.) In Section 2 we re-
view the details of how polygonal curves are represented by
strip trees as described by Ballard [1]. In Section 3 we dis-
cuss what primitives are needed to extend strip trees to gen-
eral parametric curves. In Section 4 we briefly review affine
arithmetic and explain how the information it provides can
be used to compute bounding rectangles for pieces of para-

Figure 1: Approximating a curve with rectangles.

metric curves; as mentioned earlier, this is the heart of the
strip tree representation. Section 5 contains some examples
of strip trees computed with this algorithm.

Guéziec [8] recently proposed an efficient algorithm
for computing the distance of points in the plane to a poly-
gonal curve. In Section 6 we show that his algorithm can
be extended to use the strip trees computed in Section 4 and
also how this extension can be used to provide an implicit
approximation to parametric curves using distance fields.

Section 7 contains our conclusions and discusses how
this work can be extended to surfaces.



2 Strip trees

Let C = p1 . . . pn be a polygonal curve. As explained by
Ballard [1] (see also chapter 4 of Samet’s book [21]), a strip
tree for C is a binary tree whose nodes represent pieces of
the curve by bounding rectangles. (For best performance,
these rectangles are not aligned to the coordinate axes.) The
root of the strip tree represents the whole curve. The chil-
dren of a node represent two halves of the piece of the curve
represented by the node. Leaf nodes correspond to individ-
ual edges pipi+1.

A strip tree for the polygonal curve C can be built in
a top-down fashion by starting with the whole curve C =
p1 . . . pn, finding a bounding rectangle for it, choosing a
splitting point pk, and then recursively building strip trees
for the two halves p1 . . . pk and pk . . . pn. (Ballard [1] also
discusses a non-recursive bottom-up algorithm, but the top-
down algorithm generates tighter approximations.)

Ballard [1] computed a bounding rectangle for a piece
P = pi . . . pj by choosing the smallest rectangle with a
side parallel to the line segment L = pipj that joins the two
extremes of P . To compute this rectangle, one has to find
the points pk with i < k < j that are farthest from L on
both sides. The point at maximum distance to L is chosen
as the splitting point. See Figure 2.

The bounding rectangle computed by Ballard is not
necessarily the smallest rectangle containing the piece P ,
but it is easy to compute.* Moreover, in practice the split-
ting point is usually near the middle of P , and so the whole
strip tree is usually computed in time O(n log n). (How-
ever, in the worst case it can take quadratic time [13].)
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Figure 2: Geometry of bounding rectangles for strip trees.

*The smallest rectangle containing a polygonal line P can be com-
puted in linear time by first computing the convex hull of P [16] and then
computing its minimal bounding rectangle [23], but the total time is likely
to be larger. On the other hand, smaller rectangles may mean better overall
performance of the strip tree. As far as we know, the impact of using the
best rectangles in strip trees has not yet been studied [9].

3 Strip trees for parametric curves

The notion of strip trees can be carried over to a general
parametric curve C given by γ: I ⊆ R → R

2 as long as
we know how to compute bounding rectangles for pieces
of C and how to choose splitting points. Here is a skeleton
algorithm for computing a strip tree for a curve C = γ(I);
the strip tree is the result of strip-tree(I):

strip-tree(T ):
B ← bounding rectangle for P = γ(T )
if good-enough(T, B) then

return 〈T, B, nil, nil〉
else

split T into T1 and T2

return 〈T, B, strip-tree(T1), strip-tree(T2)〉

Here, good-enough(T, B) is an application-dependent
predicate that decides when to stop recursion. A suitable
predicate for pure geometric approximation is simply

good-enough(T,B):
return width(B) < ε

where ε is a user-selected tolerance.
Each node in the tree computed by strip-tree has four

fields 〈T, B, L, R〉, where T ⊆ I is the parametric interval
corresponding to the piece P = γ(T ) represented by the
node, B is a rectangle containing P , and L and R are the
children of the node. The efficiency of the strip tree repre-
sentation is closely related to how well B approximates P .

A bounding rectangle B for P = γ(T ) could be com-
puted by sampling the interval T and finding the minimal
rectangle containing the convex hull of the corresponding
sample points on P [23]. However, it would be hard to
decide how fine the sampling should be to be faithful to
the curve; although heuristics are available [5], they do not
guarantee the correctness of the bounding box. In Section 4
we show how to use affine arithmetic to compute bound-
ing rectangles that are guaranteed to contain P . Like the
bounding rectangles used by Ballard for polygonal curves,
the rectangles computed with affine arithmetic are not the
best possible, but they converge rapidly to the curve.

Choosing splitting points as Ballard did would require
finding the parameter t ∈ T corresponding to the point at
maximum distance to line segment joining the two extremes
of P . This is a global optimization problem that is best
avoided. Another good candidate for the splitting point is
the midpoint of P with respect to arc length. This is the
solution adopted by Günther and Wong [10] in their arc
tree. The midpoint of P may be difficult to compute; a
much simpler choice for the splitting point is the point in P
corresponding to the midpoint of T . We shall adopt this
choice in the sequel.



4 Affine arithmetic

Affine arithmetic (AA) was introduced in SIBGRAPI’93
[2] as a tool for validated numerics [22]. Since then, AA
has been applied to the robust solution of several graphics
problems [4,6,7,11,12], where it has successfully replaced
interval arithmetic [17].

In AA, a quantity x is represented as an affine form,

x̂ = x0 + x1 ε1 + · · ·+ xn εn,

which is a polynomial of degree 1 in noise symbols εi,
whose values are unknown but assumed to lie in the inter-
val [−1, +1]. From this representation, we conclude that
the quantity x lies in the interval [x0 − rx, x0 + rx], where
rx = |x1| + · · · + |xn|. In other words, quantities in AA
also naturally represent intervals, and so AA can replace
interval arithmetic [17].

The basic arithmetic operations and elementary func-
tions can be extended to handle affine forms [22]. Affine
operations (translation, scale, addition, and subtraction) are
straightforward. Non-affine operations, such as multiplica-
tion, square root, and trigonometric functions, use a good
affine approximation plus an error term (which creates a
new noise symbol). So, the result of a function f applied to
affine forms is another affine form

f̂ = f0 + f1 ε1 + · · ·+ fn εn + fk εk,

where |fk| bounds the error committed when replacing f
by the affine approximation f0 + f1 ε1 + · · ·+ fn εn.

Once the basic operations and functions have been ex-
tended to affine forms, one can automatically compute ar-
bitrarily complex functions with AA by decomposing them
into a sequence of elementary steps. This can be done very
conveniently in languages that support operator overload-
ing, such as C++, but it can also be done easily by hand or
with the aid of a precompiler [3]. (We use a precompiler
written in Lua [14].)

Exploiting correlations given by affine arithmetic

One key feature of affine arithmetic is that it is able to han-
dle correlations between quantities. We now explain how
this is done, as a preparation to showing how to compute a
bounding rectangle for a piece γ(T ) of a parametric curve
C = γ(I), where T = [a, b] ⊆ I .

Start by writing γ(t) = (x(t), y(t)). Next, convert
t ∈ T to an affine form

t̂ = t0 + t1 ε1,

where t0 = (b+a)/2 and t1 = (b−a)/2. Note that t̂ ranges
over T when ε1 ranges over [−1, +1]. Next, compute the
coordinate functions x and y at t̂ using affine arithmetic,

obtaining two affine forms:

x̂ = x0 + x1 ε1 + · · ·+ xn εn

ŷ = y0 + y1 ε1 + · · ·+ yn εn

Now comes the key observation: The values of x and y are
not independent — they have a partial correlation each time
their affine forms x̂ and ŷ share a noise symbol εi with non-
zero coefficients xi and yi.

Taken separately, the equations above say that x is in
the interval X = [x0 − rx, x0 + rx] and y is in the inter-
val Y = [y0 − ry , y0 + ry ], and so the point (x, y) is in
the rectangle R = X × Y . However, because of the im-
plicit correlations, the point (x, y) is actually in a smaller
region K ⊆ R. The narrower this region, the more x and y
are correlated. The region K is the image of the hyper-
cube [−1, +1]n 3 (ε1, . . . , εn) under the affine transfor-
mation R

n → R
2 given by the matrix
[

x0 x1 · · · xn

y0 y1 · · · yn

]

.

So, K is zonotope, that is, a convex polygon that is centrally
symmetric with respect to the point (x0, y0), the image of
the origin (0, . . . , 0) ∈ R

n [26].
As an extreme example, take C to be the straight line

segment γ(t) = (1, 1) + t(4, 6), for t ∈ [0, 1]. Then

t̂ = 0.5 + 0.5 ε1

x̂ = 1 + 4 t̂ = 3 + 2 ε1

ŷ = 1 + 6 t̂ = 4 + 3 ε1

These equations say that the point (x, y) is exactly on the
line segment, even though, taken separately, they say only
that x ∈ [1, 5] and y ∈ [1, 7]. This result is exact because
AA handles affine operations without truncation errors, and
in this case also without rounding errors.

For a less extreme example, take C to be the parabolic
segment γ(t) = (t2, t), for t ∈ [0, 2]. Then computing
x and y with AA gives

x̂ = t̂ 2 = 1.5 + 2 ε1 + 0.5 ε2

ŷ = t̂ = 1 + 1 ε1

The new noise symbol ε2 comes from the (non-affine)
squaring operation: the second-order term ε2

1, whose range
is [0, 1], is replaced by 0.5 + 0.5 ε2, losing its correlation
with ε1. Nevertheless, information on first-order correla-
tion between x and y is preserved because x̂ and ŷ share ε1.
This information is sufficient to yield a good approxima-
tion for the joint range of x and y. Indeed, taken sepa-
rately, these equations say only that x lies in the interval
X = [−1, 4] and y lies in Y = [0, 2]. However, taken
jointly, they say that (x, y) lies in the dark parallelogram
shown in Figure 3, which is substantially smaller than the
rectangle X × Y = [−1, 4]× [0, 2] shown in light grey.



Figure 3: Zonotope approximation of a parabola segment.

Computing bounding rectangles with affine arithmetic

We compute a bounding rectangle for γ(T ) in two steps:

1. compute the convex region K ⊇ γ(T ) given by AA;

2. compute a bounding rectangle for K.

For step 1, we have to explain how to find the sides
of K from the affine forms x̂ and ŷ given by AA as a rep-
resentation of γ(T ). First, order the 2n vectors (xi, yi) and
(−xi,−yi) for i = 1, . . . , n circularly around the origin.
Let v0, . . ., v2n−1 be the sorted list. Then, K is the polygon
whose 2n vertices p0, . . ., p2n−1 are given by

pi =

n−1
∑

k=0

vk+i,

with indices computed modulo 2n.
For step 2, we choose to compute the rectangle of

minimal width containing K. In general, the rectangle of
minimal width containing a convex polygon has one side
collinear with some side of the polygon, and can be found
in linear time [23]. However, as mentioned earlier, the con-
vex polygons K given by AA are not generic: they are sym-
metric with respect to their center (x0, y0). This fact greatly
simplifies finding the rectangle of minimal width contain-
ing K: the width is the smallest distance from the center
to a side of K. The rectangle of minimal width will have
two sides overlapping the sides of the polygon closest to the
center.

5 Examples of strip-tree approximations

We now present strip approximations for some parametric
curves computed with affine arithmetic as described in Sec-
tion 4. Because it is difficult to show the complete trees and
the geometry of the curve, the pictures will show only the
nodes at certain levels of the tree. Hopefully, this will show
how well the strip trees approximate the curves.

Figure 4 shows levels 0 to 3 of a strip tree for the circle
given by x = cos(t), y = sin(t), t ∈ [0, 2π]. Figure 5
shows levels 5 to 8 of a strip tree for the spiral given in
polar coordinates (r, t) by r = 0.1 t, t ∈ [0, 45]. Figure 6
shows levels 3 to 6 of a strip tree for the “butterfly” given in
polar coordinates by r = sin(2t)+sin(5t)+2, t ∈ [0, 2π].
Note how fast the approximations converge to the curve.

Figure 4: Strip approximations for a circle.



Figure 5: Strip approximations for a spiral. Figure 6: Strip approximations for a butterfly.



6 Distance from a point to a curve

In this section, we show how a strip tree for a parametric
curve C can be used to compute efficiently a guaranteed
approximation to the distance d(p, C) of a point p ∈ R

2

to C:
d(p, C) = min{d(p, γ(t)) : t ∈ I}.

The method we describe below is a special case of the
branch-and-bound optimization algorithm [19] and is simi-
lar to the methods described by Ballard [1] and Guéziec [8].
The main difference is that in our case the endpoints of
each arc P of C are not known; all we know is that P is
contained in a rectangle B. Therefore, all we have is that
d(p,P) ∈ D(p, B), where D(p, B) is the distance inter-
val from p to B, namely, the range of d(p, q) as q ranges
over B:

D(p, B) = {d(p, q) : q ∈ B}.

Ballard’s version of the point-to-curve distance algo-
rithm used a simple recursive enumeration of the strip tree
with cutoffs [1]. Like Guéziec [8] and branch-and-bound
optimization algorithms, we use a more efficient enumer-
ation based on a priority queue Q. The entries of Q are
pairs 〈N, dinf〉, where N is a node 〈T, B, L, R〉 from the
strip tree and dinf is the lower bound of the distance inter-
val D(p, B). The queue Q is ordered such that the entry
with minimum dinf is at the front.

The distance algorithm starts by inserting the root N0

of the strip tree into the queue Q. Then, elements with
smallest lower distance bound dinf are repeatedly extracted
from Q until a leaf element is reached. Non-leaf elements
are split into two sub-elements, which are inserted into the
queue. The algorithm also maintains a global bound dsup to
the distance d(p, C). Any entry 〈N, dinf〉 with dinf > dsup

could be deleted from Q; for simplicity, this optimization is
not shown in the skeleton algorithm below.

distance-estimate(p, N0):
Q← empty queue
dsup ← +∞
insert(Q, 〈N0, dsup〉, p)
while Q 6= ∅ do
〈N, dinf〉 ← extract(Q)
if is-leaf(N) then

return [dinf , dsup]
else

new-entry(Q, N.L, p)
new-entry(Q, N.R, p)

The auxiliary procedure new-entry adds an entry to the
queue, updating dsup:

new-entry(Q, N, p):
compute [dlo, dhi]← D(p, N.B)
if dhi < dsup then dsup ← dhi

if dlo ≤ dsup then insert 〈N, dlo〉 into Q

Figure 7: Approximate distance field and offsets.

Figure 7 shows an approximate distance field for the
butterfly used in Section 5; it was computed with the
distance-estimate algorithm using a strip tree of uniform
depth 7 and dinf as an approximate distance. In this image,
the darker the point, the farther it is from the curve. Due
to the Mach band effect, the medial axis appears in dark,
being the locus of first-order discontinuity of the distance.
Figure 7 also shows some approximate offsets computed
from this distance field (cf. [18]).
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Figure 8: Geometric parameters defining a rectangle.

Computing the distance interval

We now show in detail how to compute the distance inter-
val D(p, B) needed in procedure insert. We assume that
each rectangle B of the strip tree is represented by its cen-
ter o and two orthogonal vectors u and v, each parallel to
one side of B and whose length is half of the length of that
side (see Figure 8). Then the distance interval D(p, B) can
be computed with the following algorithm:

D(p, B):
r ← p− o
α← 〈r, u〉/〈u, u〉
β ← 〈r, v〉/〈v, v〉
shi ← r − sign(α) · u− sign(β) · v
slo ← r + clamp(α) · u + clamp(β) · v
return [ |slo|, |shi| ]

where
clamp(x) = min(1, max(−1, x)).

A quicker approximation, after Guéziec [8], is to ex-
tend the rectangle B with two semicircular caps, as shown
in Figure 9. Since the resulting capped rectangle B∗ con-
tains B, we have D(p, B) ⊆ D(p, B∗). The rectangles in a
strip tree are usually very thin compared to their length, and
so the difference between D(p, B) and D(p, B∗) is usually
very small. We used D(p, B∗) instead of D(p, B) to gen-
erate the approximate distance field shown in Figure 7. The
distance interval D(p, B∗) can be computed as follows:

D(p, B∗):
r ← p− o
α← 〈r, u〉/〈u, u〉
shi ← r − sign(α) · u
slo ← r + clamp(α) · u

ε←
√

〈v, v〉
return [max(0, |slo| − ε), |shi|+ ε]

7 Conclusion

We have shown how affine arithmetic readily provides guar-
anteed bounding rectangles for pieces of parametric curves.
Although these rectangles are not necessarily the small-
est ones, they are aligned with the curve and so converge

Figure 9: Capped rectangle.

rapidly to the curve. Interval arithmetic can provide guar-
anteed bounding rectangles, but they would be aligned with
the axes, and so would converge more slowly to the curve.
Compare Figure 10 with the last example in Figure 4. For
a recent approach restricted to splines, see [20].

Figure 10: Rectangle approximation computed with inter-
val arithmetic.

From the bounding rectangles provided by affine arith-
metic, we built a multi-resolution representation that gener-
alizes to general parametric curves the strip tree representa-
tion introduced by Ballard [1] for polygonal curves. This
representation is a key component in solving efficiently
several computer graphics problems. As an example, we
showed how to compute approximate distance fields for
parametric curves by combining the multi-resolution rep-
resentation computed with affine arithmetic with an algo-
rithm similar to one described recently by Guéziec [8] (see
also [15]). Those distance fields provide an implicit approx-
imation to a parametric curve.

Future work

Further work will be aimed at surfaces. The method for
computing bounding zonotopes described in Section 4 is
easily extended to handle parametric surfaces: We simply
use affine arithmetic to compute a three-dimensional zono-
tope containing σ(W ), where σ: Ω ⊆ R

2 → R
3 defines

the surface and W ⊆ Ω. However, several important de-
tails are different.

First, computing a rectangular box containing the
zonotope is much more complicated in R

3 than in R
2. Sec-



ond, and more important, is the form of W . In the curve
case, the domain of γ was an interval, which was naturally
decomposed in other intervals. In the surface case, even
if the domain Ω is a rectangle, there are several choices
for decomposing it into subregions W . The simplest form
for W is a rectangle U × V . This is also the best form
for computing with affine arithmetic. However, this choice
leads to a quadtree decomposition of Ω, which is not always
suitable for geometric processing because it is topologically
inconsistent [25]. Quadtrees can be converted to triangula-
tions [25], but triangles are not suitable for computing with
affine arithmetic, which prefers zonotopes. We plan to use
4-8 meshes [24]: they are hierarchical, topologically con-
sistent, and can be seen to contain only rectangles (aligned
with the axes or rotated 45 degrees), which are suitable for
computing with affine arithmetic.
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