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$EVWUDFW�  Digital image interpolation techniques are frequently used to enlarge pictures, i.e. zooming in, and 
they are upon increasingly demand for developing product applications using digital still cameras. One common  
difficulty with conventional interpolation techniques is that of preserving details, i.e. edges, and at the same 
time smoothing the data for not introducing spurious artifacts.  A definitive solution to this is still an open issue, 
although there are working methods in the market, see e.g. Parker et. al. [6],  Sakamoto et. al. [8] for recent 
surveys.  In this paper we propose a locally adaptive edge-preserving algorithm for image interpolation, which 
deals with this problem, and different than other methods  shows how to compute local thresholds preserving 
edges and not destroying smoothness at the same time.   

��� ,QWURGXFWLRQ�

An image zooming system is of essential interest in many 
applications, such as for entertainment, or scientific 
visualization and image analysis tasks.  In order to produce 
an enlarged picture from a given one (i.e. zooming) an 
interpolation method is commonly used, and many are 
known from the basic literature, see for example Pratt [7], 
and Gonzalez & Woods [2 ].   

A typical problem with most interpolation techniques 
is that although smoothing the data and keeping the low 
frequencies in the new zoomed picture, they are not able to 
enhance the high frequencies or preserve the edges equally 
well.  Visually those problems will result in either blurring 
or blocking artifacts.  A possible solution would need a sort 
of non-linear interpolation, taking into account the 
directional variation for maintaining the sharpness of the 
new enlarged image.  Other proposed techniques work in 
this direction, e. g. Battiato et. al. [1] and also Hong et. al. 
[3], although they rely on heuristic global thresholds for 
deciding upon the types of edges to interpolate.  In this 
paper we propose a new algorithm to deal with this 
problem, in a sense it performs a gradient controlled 
weighted interpolation.  The main differences from work in 
the literature is that our algorithm works in a locally 
adaptive way, using the sensing of the edges and 
smoothness at the same time, and computing local 
thresholds to decide the interpolation.  We have compared 
our algorithm  with most of the common ones from the 

literature and  the outcome shows that the results are very 
competitive.   The algorithm is first proposed for gray scale 
images, although extension for working with  color images 
is almost straightforward and it will be done in future work 

The rest of the paper is organized as follows.  Section 
2 presents in detail the algorithm for zooming digital 
images.  Section 3 shows a set of experiments made with 
typical images, and also presents a comparison with most 
algorithms from the literature.  Section 4 presents the main 
conclusions and points to future work. 
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Generally, zooming in digital images is performed by 
doubling the original image, although factors other than 2 
could be devised, we will consider here enlarging a picture 
by 2.   As mentioned before the purpose is to design a 
technique which preserves the sharpness of the original 
data, although maintaining smoothness where appropriate.  
For practical applications the solution would also have to 
be of low complexity, and free of global threshold choices 
since it should work on a large variety of scenes and 
lighting conditions.  Our approach works on detecting 
possible edges and common directions,  and then 
controlling the interpolation based on the local variance of 
the original image. 



  

  Our algorithm works in four (4) stages, which we 
have named 1) expansion; 2) edge preservation; 3) gradient 
controlled smoothing; 4) gradient controlled filling.   
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This is the simplest stage performing an expansion of the 
original image , (n x n) pixels onto a grid = (2n-1 x 2n-1).  
Figure.1 shows the two images, notice that the pairs of even 
coordinates of Z are all left undefined at this stage, and the 
pairs of odd coordinates have the same value brought onto 
Z by the original image. 
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)LJXUH�� Expansion stage showing original image , (n x n) 
and grid = (2n-1 x 2n-1). 

For enlarging a picture for values bigger than 2, the 
algorithm can work sequentially making a doubling 
enlargement each step, 2, 4 8, and so on. 
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At this stage the idea is to sense the edges from the original 
image ,, based on the lattice formed around the pairs of 
even coordinates of grid =.  This is a simple and fast way to 
sense the edge directions.  More relative directions could 
be sensed using a different neighborhood, although the 
advantages of expanding the number of directions for the 
sake of precision have to be put against the cost of 
increasing the complexity of the algorithm.  From our 
results, and from the work seen in the literature these do not 
seem to be an issue, and we favored the low complexity 
approach.  Figure.2 shows the arrangement of this lattice 
for computing the interpolating values. Five (5) cases are 
sensed based on the local variance of the data.  Figure.3 
shows the five cases to be taken into consideration, where 
3.a) represents no edge, 3.b) edge in the SW-NE direction, 
3.c) edge in the NW-SE direction, 3.d) edge in the NS 
direction, 3.e) edge in the EW direction.   In the process of  
producing an enlarged picture, our proposal is to consider 

the edges based on the local variance of the original data 
(Figure.2), for this two thresholds are computed locally, 7 1  
and 7 2 .   
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)LJXUH�� Local neighborhood of grid  = to be interpolated 
with points from ,. 

 

 

 

 

 

 

       a)               b)                 c)                   d)               e) 

)LJXUH�� Five cases of  presence of  edges to be 
considered. a) no edge; b) edge in the  SW-NE direction, 
3.c) edge in the NW-SE direction, 3.d) edge in the NS 
direction, 3.e) edge in the EW direction. 

Let us consider  σ  the standard deviation of  
points(A,B, C, D, E, F, G, H), our thresholds will be: 

 

σ=7 1  (1) 

2
2

σ=7  (2) 

 

Sensing a variation, either favoring one of the directions 
in the lattice chosen in the local neighborhood, or a 
smoothing factor when no direction is shown to be more 
present, is the function of the thresholds.  The rationale of 
our choices for  7 1   and  7 2  is to perform interpolation 
with low squared error. 

Based on the information sensed locally, this stage will 
perform a scan over the grid =�for interpolating the points 
whose coordinates are both even.  Figure.4 shows a local 
layout of the pixels to be interpolated.  
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)LJXUH�� Layout of the local neighborhood to be 
interpolated at the stage “Edge Preservation”. 

 

The steps will be the following:  

1. For every pixel W (even  coordinates of  =), do 

1.1 If  |range(A,B,C,D)| < T1, then W = 
(A+B+C+D)/4 

1.2 If  |A-D| > T2 & |A-D| >> |B-C|, then W = 
(B+C)/2 

1.3 If |B-C| > T2 & |B-C| >> |A-D|, then W = 
(A+B)/2 

1.4 If |A-D| > T1 & |B-C| > T1 & (A-D)*(B-
C) > 0, then L1=(A+B)/2; L3=(C+D)/2 

1.5 If |A-D| > T1 & |B-C| > T1 & (A-D)*(B-
C) < 0, then L4=(A+C)/2; L2=(B+D)/2 

 

After this stage there will be  many points left 
undefined.  The algorithm will leave them and go to the 
third stage.  After passing the four stages if there still be 
holes left other runs of the algorithm should be done only 
on the points left undefined, until all the points in = are 
interpolated. 
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This stage will take care of points with at least one odd 
coordinate of  = left undefined until now.  Figure.5 shows 
the  layout of a local neighborhood with point Q being this 
point left undefined.   
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)LJXUH�� Layout of local neighborhood at the third stage. 

There will be two situations, first one where points L1 
and L3 are known. In this case, do 

1. If L2 or L4 are undefined, do 

1.1 If |L1-L3| < T1, then Q = (L1+L3)/2 

2.If L2 and L4 are both known, do 

2.1 If |L1-L3| > T2 & |L1-L3| >> |L2-L4|, then Q = 
(L2+L4)/2 

   2.2 If  |L2-L4| > T2 & |L2-L4| >> |L1-L3|, then Q = 
(L1+L3)/2 

Otherwise, leave Q undefined. 

In the second situation, L2 and L4 are known, then do 

1.If L1 or L3 are undefined, do 

         1.1 If |L2-L4| < T1, then Q = (L2+L4)/2 

2.If L1 and L3 are both known, do 

2.1 If |L2-L4| > T2 & |L2-L4| >> |L1-L3|, then Q = 
(L1+L3)/2 

2.2 If |L1-L3| > T2 & |L1-L3| >> |L2-L4|, then Q = 
(L2+L4)/2 

Otherwise, leave Q undefined. 
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At the final stage the points left undefined in the 
interpolation will be filled, using an weighted value based 
on a bin histogram of the local neighborhood.  The stage 
works as follows: 

1.Compute m= (gray scale)/p bins of the image (e.g. gray 
scale = 256, p=16).  Each i-th bin will include values from 
p(i-1) to pi-1 

2.Find a pixel W, in =, with both coordinates even, left 
undefined, do 

2.1 For each of the surrounding pixels A,B,C, and D,   

find to which bin they belong to, pick the median of 

each bin, and then W = mean(medians of bins of A,  

B, C, D) 

3.Find a pixel Q, in =, with at least one odd coordinate, left 
undefined, do 

3.1 For each of the surrounding pixels L1,L2,L3, and 
L4, find to which bin they belong to, pick the median 
of each bin, and then Q = mean(medians of bins of L1, 
L2, L3, L4) 

 

If after the four stages there will be points in = 
undefined, run algorithm starting from second stage again. 

Next section will explain many experiments we have 
run with the proposed method, and six (6) others commonly 
used. 
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In this section, we present some experiments done in order 
to demonstrate the effectiveness of the proposed method for 
the image interpolation problem presented in this work.  

We start with a gray level version of the Lena image 
with 512x512 pixel size, as shown in Figure.6(a). A sample 
containing Lena’s eye with size of  47x47 pixels is chosen 
to be zoomed, as seen in Figure.6(b). For the interpolation 
process inherent to the zooming, we have also used for 
comparison purposes, besides our method, other common 
algorithms from the literature, such as the nearest neighbor 
(NN), bilinear (BL), cubic (taking into consideration one  
(C-1) and two variables (C-2)), cubic b-spline (SPL), and 
linear (taking the correlation into consideration) (LC). 
Those are considered the most common techniques, and the 
best options available, see for details and other tests 
Lehmann et.al. [4], Maeland [5], Parker et.al.[6],  and 
Sakamoto et.al. [8]. 

 

 

 

(a) (b) 

)LJXUH�� (a) Original 512x512. (b) Sample 47x47. 

 

The results of each interpolation method applied to the 
sample (Figure.6 (b)) can be seen in Figure.7. It can be 
noticed that the method proposed in the current work keeps 
the magnified image as smooth as possible while 
sharpening it. This is a consequence of using an 
interpolation based on the local adaptive procedure 
proposed, weighting smoothness and high-contrast. It 
makes a balancing between these two conditions.   
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)LJXUH�� – Zoomed images resulted from the 
interpolation methods applied to the sample of 
Lenna image. (a) Sample 47x47to be zoomed; 
Results using (b) Nearest neighbor (NN). (c) 
Bilinear. (BL) (d) Cubic 1-var (C-1). (e) Cubic 2-
var (C-2). (f) Cubic B-spline. (SPL) (g) Linear 
taking correlation into consideration (LC) (g) Our 
Locally adaptive non-linear interpolation (LAI). 

 

We conducted other experiments with different 
textured images to show the versatility of our approach. 
One such example is the aerial image shown in Figure.8. In 
the same way, a region of size 47x47 is chosen for the 
zooming process, seen in Figure.8(b). The results of each 
interpolation for comparison are shown in Figure.9.  

 

 

 

(a) (b) 

)LJXUH�� (a) Original 512x512. (b) Sample 47x47. 

 

 

 

 

 

 

 

 



  

 

 
(a) 

    
(b) (c) (d) (e) 

   
(f) (g) (h) 

)LJXUH�� - Zoomed images resulted from the 
interpolation methods applied to the sample of 
Aerial image. (a) Sample 47x47to be zoomed; 
Results using (b) Nearest neighbor (NN). (c) 
Bilinear. (BL) (d) Cubic 1-var (C-1). (e) Cubic 2-
var (C-2). (f) Cubic B-spline. (SPL) (g) Linear 
taking correlation into consideration (LC) (g) Our 
Locally adaptive non-linear interpolation (LAI).. 
 

Although visually the results of our proposed 
technique can be considered good, it is difficulty only 
looking at the images from Figures 7 and 9, to make a rank 
of the most appropriate.  One way  commonly used to 
compare interpolation techniques is to compute a Signal to 
Noise Ratio (SNR), or a cross-correlation between an 
original image and the interpolated ones, as suggested in 
Battiato et. al. [1], Sakamoto et. al. [8]. 

For the process of comparing the interpolated images 
by cross-correlation, we will take a sample (as in Figure.6 
(b)) with 47 x 47 pixels,  apply a reduction by decimation 
by creating a new sample ,� (23 x 23) pixels taking only 
the odd columns and rows of sample ,� (47 x 47).  Then, 
apply all the interpolation methods to zoom ,� to a new 
image =�.  Cross-correlation will be applied to the pairs 
=�²,�, and the methods with the highest values of cross-
correlation will be more appropriate and effective, since 
they will approximate better the original image ,�.   Off 
course the reduction could introduce further variation in the 
images, which could favor or not certain interpolations. 
However, ,� and ,�� are fixed and they are the same for all 
methods. As mentioned before this is a practical and 
commonly used method for comparison. 

A cross-correlation value defined between a pair of 
images can be computed as: 
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Where, 

),(;),( ML%ML$ �are images to be correlated; 

ON,  are the number of  columns and rows of the 
images; 

ED,  are the mean values of  images A, and B respectively; 

Table.1 shows the cross-correlation values computed 
for the two image samples (Lenna and Aerial). From the 
values shown is can be seen that the three which better 
approximate the original image, i.e. better overall 
interpolation results, are the Bilinear (CC-BL), Linear with 
correlation (CC-LC), and the method we propose here 
Locally Adaptive Interpolation (CC - LAI).   

 Lenna sample Aerial sample 
CC -   NN 0.9515 0.8300 
CC – BL  0.9933 0.9226 
CC – C-1 0.9746 0.8792 
CC – C-2 0.9746 0.8792 
CC - SPL 0.9746 0.8792 
CC - LC 0.9931 0.9208 
CC - LAI 0.9902 0.9093 
7DEOH�� – Cross-correlation values computed between the 
original samples of images Lenna, and Aerial, and the 
interpolated ones by each method.  CC-NN: Nearest 
Neighbor. BL: Bilinear, C-1: Cubic 1 var., C-2: Cubic 2-
var, SPL: Cubic Spline, LC: Linear with correlation, LAI: 
our Locally Adaptive Interpolation.  

The method we have proposed here is quite 
competitive as can be seen from the results,  because 
besides realizing a good qualitative zooming it is fast and 
easy to implement.  Different than other methods the values 
(as thresholds) are set locally and dependent on the data.   
Next section points to conclusions and future work. 
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In this paper we have proposed a new method for 
realizing interpolation in digital gray scale images. Other 
works fom the literature, such as Battiato et. al. [1], and 
Hong et. al. [3] have also proposed interpolation techniques 
which aimed at keeping edges and details while smoothing.  



  

Our work is similar to those in these aspects, however it 
incorporates three new important features: first, it models 
the edges based on a larger neighorhood, two concentric 
squares, in order to give more coherence to the 
interpolating decision nods; second, it proposes a way to 
compute the thresholds needed for those decisions based on 
the variance of the data, and third it computes the 
thresholds locally, making it widely applicable.  

We have showed tests according to the commonly 
used in the area, such as computing a cross-correlation to 
measure the best interpolation methods.  Our Locally 
Adaptive Interpolation (LAI) method ranked as one of  the 
best choices, with the advantage of easiness to implement 
and low complexity. 

As future works it would be interesting to check the 
performance of the technique as first approximations of 
super-resolution, or for active vision applications, since it is 
aimed for real time use. 
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