
Smart Visible Sets for Networked Virtual Environments

FÁBIO O. MOREIRA JOÃO L. D. COMBA CARLA M. D.S. FREITAS
Instituto de Informática - Universidade Federal do Rio Grande do Sul

Av. Bento Gonçalves, 9500 Caixa Postal 15064 CEP 91501-970 Porto Alegre, RS, Brasil
{moreira, comba, carla}@inf.ufrgs.br

Abstract - The real-time visualization of complex virtual environments across the network is a challenging
problem in Computer Graphics. The use of pre-computed visibility associated to regions in space, such as in
the Potentially Visible Sets (PVS) approach, may reduce the amount of data sent across the network. How-
ever, a PVS for a region may still be complex, and further partitions of the PVS are necessary. In this paper
we introduce the concept of a Smart Visible Set (SVS), which corresponds to (1) a partition of PVS informa-
tion into dynamic subsets that take into account client position, and (2) an ordering mechanism that enumer-
ates these dynamic sets using a visual importance metric. Results comparing the SVS and the PVS approach
are presented.

1. Introduction
Computer Games are one of the most powerful forces
driving graphics development these days. The recent
advances in graphics hardware allows the creation of rich
and complex scenarios, with advanced texture effects and
lighting. One of the most promising aspects of the game
business is on-line gaming, where several players interact
with each other in a virtual environment across the
network. Unlike personal gaming, on-line gaming has the
challenge of streaming game information (environment,
players positions, actions, etc) to remote clients, usually
referred to as the latency problem. This is a hard problem
to solve, as streaming complex environments with lots of
geometry and texture can be very expensive. Therefore, a
trade-off on streaming speed against environment
complexity needs to be made, leading most of the times
to simpler environments (seen in on-line massive
multiplayer games such as Everquest or Ultima Online).

If the networking speed is a limiting factor, one way
to increase game complexity is to send information or-
dered by visual importance to the client. In other words,
the complexity is not bound by the environment itself,
but from the views that we obtain from it. This is a clas-
sical problem in graphics, including visibility and occlu-
sion-culling algorithms, and multi-resolution, level-of-
detail (LOD) and image-based representations of geome-
try. Integrating these solutions to help solve the latency
problem is the focus of our investigation.

The pre-computation of visibility information and
storage in Potentially Visible Sets (PVS) have been used
in many applications and in games such as Quake. A
PVS consists of a list of objects (polygons or other re-
gions), representing what can be seen from a region in
the environment. The PVS needs to be sent only once for
each region, and while the client stays in this region, the
PVS of adjacent regions (hopefully predicting the client
path) can be sent to maintain full use of network band-
width, allowing spatial coherence to be explored. If a

single PVS is still more than what the network can han-
dle, further orderings or simplification of geometric de-
tail based on an importance metric are alternatives need
to be performed.

In this paper we propose the Smart Visible Sets
(SVS) approach to allow pre-computed visibility infor-
mation to be adapted to the needs of a client viewing
parameters. Usually, PVS information is not stored in a
way that can be efficiently adapted to further processing.
In the SVS, objects are first grouped by angle into direc-
tions that span the hemisphere of viewing directions.
Organizing features by angle allow the ones located
along the client’s viewing direction to be sent before the
ones behind the viewer. The angle break-up of viewing
directions can be made as flexible as possible, into as
many directions as necessary, and region specific (i.e.,
adapted to its visibility set). Additionally, each angle
group is broken into subgroups with respect to its dis-
tance to the PVS region. Having the distance information
pre-computed allows faster selection of LOD or image-
based replacements to geometry.

Therefore, the SVS represents an indexed data struc-
ture to visibility information, classified into angle and
distance subgroups. Along the representation, an order-
ing mechanism that uses a pre-defined importance metric
(maybe user-defined), can efficiently enumerate the in-
formation in such a way that data can be streamed across
the network.

The paper is organized as follows. In the next sec-
tion, we review past and relevant work. The SVS ap-
proach is described in Section 3, presenting several ideas
to break viewing directions into groups. Results are dis-
cussed in Section 4 while conclusions and directions of
future work are presented in Section 5.

2. Previous Work
Techniques for rendering complex scenes in interactive
walkthroughs especially in networked virtual environ-
ments have been reported in the literature lately [9]. Most
of the research addresses acceleration of local rendering,
transmission of graphical information over a network and
scene simplification (refer to Teler and Lischinski [6] and
Pires and Pereira [8] for discussion on these topics,
which will not be specifically surveyed here).

One of the problems in the real time rendering of
complex scenes is the computation of visibility informa-
tion, which is a classical problem in Computer Graphics
[5]. Our first approach to deal with the visibility problem
is based on the computation of PVS.

Potentially Visible Sets can be computed from
points or regions (or cells) in a scene. The precomputa-
tion of the PVS from a cell is more effective regarding
computational costs than that for a point, and is stored
readily for usage during rendering in interactive walk-
throughs. Although there is an inherent space problem
due to the large number of cells in complex scenes, the
problem of reducing or simplifying PVS information has
not been frequently addressed in the literature. A tech-
nique to compress precomputed visibility sets based on
the clustering of objects and cells was presented by Van
de Panne and Stewart [7] while Gotsman et al encode
visibility information in a hierarchical scheme [2].
Cohen-Or et al [3,4] are concerned with the transmission
of the visibility sets from server to the client. The same
research group [4,1] also discusses the selection of the
best cell size depending on the size of the PVS More
recent results are reported by Koltun et al. [10]. Instead
of storing a PVS for each cell, these authors use an in-
termediate representation that is used for generating the
PVS itself during rendering. This intermediate represen-
tation is based on virtual occluders, which are a compact
representation of the aggregate occlusion for a given cell.

3. Smart Visible Sets
Smart Visible Sets (SVS) are an alternate form of
visiblity storage to PVS. To generate the SVS we break
the PVS of each cell into several subsets by using an
additional parameter. We have been working with (1)
viewing frustum and (2) distance.

Once this structure is in place, data streaming
routines can combine the SVS to allow the most relevant
data to be sent first, or to allow the culling of the non
crucial data.

In this work, we focused on 2.5D environments,
mainly cities. In this kind of dataset, our discussion of
breaking viewing directions is simplified to a planar
problem, but nevertheless has interesting aspects and
allows us to explore the SVS concept.

We currently use the Binary Space Partitioning Tree
(BSP-Tree) and the PVS generated by the QBSP3 and

QVIS applications (developed by ID Software) as a base
for our work. The scene data is stored in a BSP-Tree and
the PVS stores cell-to-cell visibility information. The
PVS for each cell is stored as an array of bits (each ON
bit meaning that the leaf is visible) and we store the SVS
in the same way.

Like the PVS, the calculation of the SVS is done in
a pre-processing step, causing no impact to the perform-
ance of the applications that use them.

3.1 Breaking Visibility by Angle
One way to split a PVS into different subsets is to break
the hemisphere of viewing directions into groups
(viewing frustums). Since we are dealing with 2.5D
scenes, we use the azimuth to split the PVS, not worrying
about frustum tilt or elevation. Deciding which are the
best angles to split the PVS is the question to be
answered.

Constant Number of Angles and Orientations
Our initial approach was to use a constant set of splitting
frustums. In this approach, the PVS of all cells are
broken by the same angles (the angles are chosen by the
user).

To split the PVS using a set of angles we need to
calculate the volumes that are represented by each cell.
Then we build two line equations using the splitting frus-
tum limits and check if the other cells’ volumes lie inside
or outside these lines. To speed up the calculations we
use the original PVS so we only need to check frustum
visibility on the cells that were already visible in the
PVS.

We use a recursive function to calculate the bound-
ing volumes of all the leaves in the scene. Starting with
the bounding volume for the whole scene, we traverse the
BSP-Tree left-side first. At each non-leaf node, we split
the bounding volume in two (using the partitioning plane
stored on the node) and then we start two new recursions
using the resulting bounding volumes and the node's sons
as parameters. When we reach a leaf we save its bound-
ing volume into an array.

For each cell and each splitting frustum, we deter-
mine two line equations. Each line equation is defined
based on the x and z coordinates of one point of the
source leaf's bounding-box and one of the splitting frus-
tum limits. To determine the correct line equation we
must pick the correct point from the leaf’s bounding box,
based on the angle value and if the angle is the starting or
ending limit of the frustum (Figure 1). Notice that we use
the bounding-box, not the bounding-volume. Choosing
the wrong point or using the bounding volume instead of
the bounding-box causes incorrect visibility calculations.

Using those two line equations, we calculate the
new cell-to-cell visibility, storing it in a bit array. We

also store information about the viewing frustum limits in
the beginning of each SVS.

To solve the new cell-to-cell visibility problem we
check if the bounding volume of the target cell lies com-
pletely outside of both frustum limits (using the two line
equations) in which case that leaf will not be visible. We
only need to check cell-to-cell visibility for those cells
that are visible in the original PVS.

Figure 1: Determining the line equations.

Finally we store the visibility information for each
splitting frustum as a bit array (Figure 2). So each leaf
will store a set of bit arrays (instead of just one, like in
the PVS). The size of the visibility information for each
leaf is:

Visibility Size = Number of leaves * Number of splitting angles

Figure 2: Visibility information for each splitting
frustum.

To determine the visibility for a given leaf using the
default PVS, we simply check which bits are ON in the
PVS of that cell. If we want to determine visibility using
a SVS split by angles we need to OR the bit arrays whose
angles intercept the user viewing frustum. Figure 3
shows how different viewing frustums generate different
visibilities in a SVS split by three angles.

Adaptive Number of Angles and Orientations

After extensive testing with the constant frustum
approach, where the user chooses the splitting frustums
that are used to generate all the SVS, we explored a more
adaptive approach.

The main problem with the constant frustum ap-
proach is that we often have a SVS storing too many visi-
ble cells, while others store just a few. If the SVS belong-
ing to a cell are too unbalanced, they won’t be very
efficient. The ideal solution would be that each of the
cell’s SVS stored the same number of visible cells.

In this new approach, we select different splitting
frustums for each cell. The user only indicates how many
candidates will be tested each time and what the maxi-
mum number of splitting frustums is. The algorithm is:

1. Starting with a 360o degree frustum, choose a set of
splitting candidates (the number of candidates that are
actually tested is picked by the user).

2. Split the frustum using the candidates and choose the
best split. The best split is the one that generates the
lowest absolute value:

Number of visible cells in the 1st frustum – Number of visible
cells in the 2nd frustum value.

3. Recursively choose candidates and pick the best splits
using the two halves of the frustum until the
maximum number of splitting frustums has been
reached.

Figure 3: SVS split by three angles.

Once the splitting frustums are chosen, the cell-to-
cell visibility calculation and the storage procedures are
the same as in the constant approach.

3.2 Breaking Visibility by Distance
Another way of splitting the PVS into different subsets is
to use the minimum distance between the cells. By
comparing the faces from the cells’ bounding-volumes
we are able to calculate the minimum distance between
them. A faster way of calculating cell-to-cell distance is
to simply calculate the distance between the cell’s
centers, but this is also a less precise algorithm as we can
see in Figure 4, where the dotted line shows an
erroneous approximation of cell distance in a top view
of the scene.

4

 x

 z
Start: 0o < x < 90o
End: 270o < x < 360o

Start: 90o < x < 180o
End: 90o < x < 180o

Start: 270o < x < 360o
End: 180o < x < 270o

Example: Frustum Range:45o - 90o

1

1

2
4

Start: 180o < x < 270o
End: 0o < x < 90o

3

2 3

Regular PVS for a cell n

PVS split by 3 angles for a cell n
Starting angle 0 Ending Angle 120

Starting angle 120 Ending Angle 240

Starting angle 240 Ending Angle 360

0 1 1 1 1 0 0 0 1 1

1 2 9 10 3 4 5 6 7 8

0 0 0 0 1 0 0 0 0 1

1 2 9 10 3 4 5 6 7 8

0 0 0 1 0 0 0 0 0

1 2 9 10 3 4 5 6 7 8

0 1 1 0 0 0 0 0 0 0

1 2 9 10 3 4 5 6 7 8

1

Starting angle 0 Ending Angle 120

Starting angle 120 Ending Angle 240

Starting angle 240 Ending Angle 360

0 0 0 0 1 0 0 0 0 1

0 0 0 1 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0

1

1

0

120

240

Viewing Frustum 80-170

Viewing Frustum 190-280

2

 1

 2

Figure 4: Distance between cell’s centers.

By setting a few distance ranges, we are able to
build a new set of SVS that adds distance information to
the visibility information. To make bitwise operations
easier, we also store the distance based SVS as bit arrays.
Each distance SVS stores a viewing distance and which
cells are visible within the distance range for that cell.

Once again we use the original PVS to perform dis-
tance calculations only on those cells that were already
visible. The distance PVS are stored in an ascending or-
der.

If we want to take into account the distance between
the cells we can do an AND between the visibility result
(OR of all SVS that intersect the viewing frustum) and
the SVS that represents the desired distance range.

By changing the distance SVS that is being ANDed
the user can quickly change the rendering quality of the
scene. We are also exploring an adaptive solution to gen-
erate the best possible rendering quality of the scene
while still maintaining a desirable frame rate.

Another possibility is combining distance based
SVS and level of detail (LOD) strategies. Checking the
distance from objects to the user requires simple calcula-
tion of which cell the object is inside. Once we have that
information, the SVS can be checked to see what level of
detail should be used.

3.3 Visual Importance Metrics
The main use for the SVS is the ordering of information.
In a client-server environment, we can order the
information that needs to be sent to the client using the
SVS, thus sending more important data first. It is easy to
see how data that lies inside the client’s viewing frustum
and closer to the client’s position should have a higher
priority over data that is far away and outside the viewing
frustum.

Using SVS we can determine which cells are closer
or/and inside the client’s viewing frustum with a small
number of bitwise operations and then order the informa-
tion that needs to be sent across the network according to
its visual importance to the client.

Without a defined visual importance metric it’s hard
to answer questions such as: “Should data that is closer to
the client but outside its frustum be sent before data that
lies inside the viewing frustum but is farther away?”. We
are currently working on a graph based metric that will
allow quick reconfiguration and testing of the visual
quality of the scene.

4. Results and Discussion
In order to test our implementations of these algorithms
as well as run benchmarks and check results, we have
developed a 3D application. It allows such operations as:
• Loading of scenes
• Visualization of the bounding-boxes of each cell in

the scene
• Visualization of the original PVS
• Visualization of SVS (viewing frustum and distance),

individually or merged with any number of other SVS
• Cell culling based on the user viewing frustum (using

the viewing frustum SVS)
• Cell culling based on the distance from the user cell

to other cells (using the distance SVS)
• Creation, storage and loading of walkthrough paths

(that are later used for benchmarking)
• A free camera mode and an user camera mode
• Benchmarks that take into account: raw number of

cells rendered in each frame and total number of cells
seen during a path

The two camera modes were created to make visu-
alization of information easier. All culling and visualiza-
tions are done based on the user camera and position.
The user himself is represented as tetrahedron. Using the
free camera mode, we can walk around the scene without
changing the current culling or visualization parameters,
making it easier to check if the algorithms are working as
intended.

Finally, the possibility of easily changing the ren-
dering parameters and creating walkthrough paths allows
the comparison between the SVS and PVS methods and
among SVS built with different splitting parameters. The
environment was implemented using Visual C++ and
OpenGL.

Our first batch of benchmarks tested the times
needed to generate different SVS. Table 1 shows these
times, for a scene with 600 buildings. The BSP tree for
this scene has 1257 leaves. These benchmarks were ob-
tained in an Athlon 1.5 machine with 256 MB RAM,
Windows 2000. We include the PVS generation time on
this table.

Table 1: PVS and SVS computation times.

Function Time

PVS 2h 37m 40s
SVS (3 Angles) 14s
SVS (4 Angles) 16s

SVS (4 Angles, 5 Splitters) 71s
SVS (4 Angles, 10 Splitters) 137s

SVS (4 Distances) 12s

Then we did a series of tests to measure the effi-
ciency of different splitting algorithms for the SVS. Re-
sults were obtained by running a set of different paths in
an environment with 600 buildings. All paths were exe-
cuted five times using different splitting options, which
include: splitting in three angles, splitting in four angles
and splitting in four angles using an adaptive algorithm.
Path 1 starts in the center of the city and moves to one of
its corners; path 2 is a straight line from one side of the
city to the other; path 3 starts in the center and moves to
one of the sides of the city, and finally path 4 is a square
shaped path around the center of the city

During the execution of the path, the visible leaves
on each frame were marked. After the path was complete,
the total number of marked leaves allowed us to measure
how much information would need to be sent to the client
using that particular partitioning strategy. Table 2 shows
the results.

We also include two pictures of the environment
taken during these benchmarks. Figure 5 shows the cull-
ing done by a 3 angle SVS. The darker buildings are the
ones that are visible in the PVS but have been culled by
the rendering engine because they lie in SVS that don’t
intersect the user’s viewing frustum (the user is repre-
sented by the tetrahedron located in the middle of the
picture).

Figure 6 shows the splitting of a PVS by 4 dis-
tances. The large white area is the non visible area. The
different shades of gray represent the partitioning of the
visible area by different distances. The more distant cells
were rendered with darker colors.

Table 2: Number of cells seen on different par-
titioning strategies.

 Path 1 Path 2 Path 3 Path 4 Totals

PVS 824

100%

918

100%

889

100%

927

100%

 100%

SVS

3 Angles

81

98.4%

612

66.6%

638

71.7%

863

93.0%

 82.4%

SVS

4 Angles

724

87.8%

775

84.4%

694

78.0%

880

94.9%

 88.7%

SVS

4 Angles

5 Splitters

739

89.6%

827

90.0%

614

69.0%

748

80,6%

 82.3%

SVS 647 779 425 747 72.9%

4 Angles

10 Splitters

78.5% 84.8% 47.8% 80,5%

5. Conclusions
Client-server applications over the network often have to
deal with the problem of having too much information to
send to its clients, or too many clients connected. They
need fast and reliable ways to cull that information when
needed.

In this paper we introduced the idea of Smart Visi-
ble Sets, and explained the algorithms used for its im-
plementation. The SVS is a tradeoff between space (both
memory and storage) and performance. It can be effi-
ciently used to sort server data according to its visual
importance to the client. Then, the more important infor-
mation for rendering can be sent first, resulting in a
smoother experience of the simulation by the user. It can
also be used to cull a part of the information (the least
important part of it) if the network traffic exceeds a limit
(either the server limit or the client limit). In a server
with a big number of clients or in slower network envi-
ronments the use of SVS can represent a big leap in per-
formance.

We also performed a series of tests that show the
advantages of the adaptive approach over the constant
approach for choosing splitting angles. We have also
proved that the SVS generation does not introduce a sig-
nificant overhead in the pre-computation of visibility
information since it’s only a small fraction of the time
needed for the PVS determination.

We have not executed tests in very large environ-
ments yet because the tools we use to generate the PVS
perform poorly on large open areas. We are currently
studying the use of different PVS generation algorithms.

The next steps in this work are (a) developing a cli-
ent-server application and comparing the visual results of
the SVS and PVS solutions; (b) adding textures to the
BSP Viewer Environment so it can look more realistic,
and (c) studying the possibility of using 3D-frustum as
splitters for the SVS.

Acknowledgments
This work has been supported by CNPq and FAPERGS.

References
[1] B. Nadler, G. Fibich, S. Lev-Yehudi, and D. Cohen-

Or, A qualitative and quantitative visibility analysis in
urban scenes. Computer & Graphics, 23(5):655-666,
1999.

[2] C. Gostman, O. Sudarsky, and J. Fayman, Optimized
occlusion culling. Computer & Graphics, 23(5):645-
654, 1999.

[3] D. Cohen-Or and E. Zadicario, Visibility streaming
for networked-based walkthroughs. Graphics Inter-
face’98, pp. 1-7, 1998.

[4] D. Cohen-Or, G. Fibich, D. Halperin, and E. Zadi-
cario, Conservative visibility and strong occlusion for
viewspace partitioning of densely occluded scenes.
Computer Graphics Forum, 17(3):243-254, 1998.

[5] D. Cohen-Or, Y. Chrysanthou and C. Silva. A survey
of visibility fo walkthrough applications. In:
SIGGRAPH 2000 Course Notes - Visibility: prob-
lems, techniques and applications, July 2000.

[6] E. Teler and D. Lischinski, Streaming of complex
scenes for remote walkthroughs. Computer Graphics
Forum, 20(3): C18-C25, 2001.

[7] M. van de Panne and J. Stewart, Efficient compres-
sion techniques for precomputed visibility. In Euro-
graphics Workshop on Rendering, 1999.

[8] P. Pires and J. Pereira, Dynamic algorithm binding
for interactive walkthroughs. Proceedings of
SIBGRAPI 2001, pp. 154-161, IEEE Computer So-
ciety Press, 2001.

[9] S. Singhal and M. Zyda. Networked Virtual Envi-
ronments. Addison-Wesley, 1999.

[10]V. Koltun, Y. Chrysanthou and D. Cohen-Or, Virtual
occluders: an efficient intermediate PVS representa-
tion, Eurographics Workshop on Rendering, pp. 59-
70, Eurographics, 2000.

Figure 5: Scene with 600 buildings, SVS split by three angles. Visible cells are light and culled information is dark.

Figure 6: Scene with 600 buildings, SVS split by 4 distances. Darker regions are more distant from the user

