
Workspace Awareness in Relaxed WYSIWIS Systems

WU, SHIN - TING

LUIZ GONZAGA DA SILVEIRA JR.

Electrical and Computer Engineering Faculty, State University of Campinas -
P.O.Box 6101, 13083-970 - Campinas, SP, Brazil
fting,gonzaga g@dca.fee.unicamp.br

Abstract. CoMo is a prototype of a collaborative 3D geometric modeling environment designed to support tem-
porally and geographically dispersed work teams. In this environment the participants may work in different
parts of the space and have distinct perspective viewing of the space. Maintaining workspace awareness becomes,
therefore, much more difficult. In this paper we present graphics solutions that we adopted for enhancing the
3D workspace awareness in CoMo. We reused several individual awareness mechanisms provided by the MTK
graphics library designed to single-user applications. Appropriate communication and distribution platform for
coordinating individual actions was devised. The main contribution of this paper is to show how group awareness
can be implemented by adequately reusing the existing individual awareness facilities.

1 Introduction

The potential benefits of systems that facilitate group work-
ing on product design seems to be huge. The typical sce-
nario for collaborative modeling is a shared workspace, where
a geographically dispersed small group of participants works
in a loosely-coupled mode for constructing and modifying
an application-dependent 3D-model over the Internet. Two
issues underlie the usability of such a system are robustness
and responsiveness.

CoMo [15], acronym forColaborativeModeler, is a
prototype of an heterogeneous collaborative 3D geometric
modeling system designed to meet a tradeoff solution for
keeping the consistency of 3D-model and for preserving
the system/network time response. The basic idea consists
in separating geometric modeling and interaction activities
(rendering and manipulation). All geometric/topological
operations are performed in ageometric/topological model,
located in a centralmodeling server, as response to net-
worked requests from the participating machines. Graphics
interactions, on their turn, are performed on the replicated
graphical model residing in local machines.

An important feature of CoMo is that the rendering
mode at each participating machine are tailorable to the lo-
cal computing power. Besides, participants may be working
in different parts of the space with distinct aim points. This
approach reduces the group focus that characterizes strict-
WYSIWIS (What You See Is What I See) oriented systems
and makes the design of 3D workspace awareness a chal-
lenging issue. Workspace awareness is knowledge about
others’ interaction with a shared workspace [10]. This in-
cludes the understanding of who is in the workspace (par-
ticipant awareness), where they are working (location and
proximity awareness), what they are looking at (perspec-

tive awareness), and what they are doing (activity aware-
ness). The way how the workspace awareness could be en-
hanced depends greatly on the tasks involved, the users, and
the environment. Once it is recognized that the workspace
awareness is an important factor in the usability of interac-
tive groupware (it helps users to simplify verbal communi-
cation, helps them coordinate actions, and helps them an-
ticipate others’ actions and intentions), we have designed,
on the basis of the existing theoretical and practical results,
a set of awareness widgets to CoMo system.

The implementation of such widgets require two kinds
of functionalities: communication services and 3D graph-
ics facilities. A freeware implementation of CORBA stan-
dard [7], called MICO [14], and MTK are used to provide
such capabilities. CORBA standard provides abstractions
for distributed object-oriented programming into heteroge-
neous distributed systems, whereas MTK is an enhanced
loosely-coupled 3D graphics library equipped with 3D in-
teraction facilities to enable effective 3D interactions [15].
MTK provides several functions for implementing widgets
that enable maintaining individual awareness while users
interact. It was originally designed for single-user purposes.

The objective of this paper is twofold: to show how
to enhance a 3D graphics library for visually providing ap-
propriate group awareness and to show how the implemen-
tation of group awareness widgets can be benefit from 3D
individual awareness widgets designed for loosely-coupled
graphics interfaces. Our results indicate, for example, that
3D Cursor and draggers in MTK is valuable not only for in-
dividual manipulations but also for conveying 3D workspace
awareness.

In the next section, we give a summary of work that
influences the design of our widgets. In section 3 the archi-



tecture of CoMo is briefly described, whereas some impor-
tant features for individual awareness supported by MTK
are given in section 4. The designed awareness widgets are
presented in Section 5. Some snapshots of the CoMo inter-
face are collected in Section 6 to try to convey the dynamics
of CoMo and its visual feedback. Finally, some reflections
about our work are summarized in section 7.

2 Related Work

There is a number of collections of papers that address com-
puter supported cooperative work concerns in a range of
aspects, including hardware, software, services and social
issues [13]. The systems typically provide two basic ser-
vices: communication channel and a shared workspace. In
this section we restrict our discussion to the work related
with the sharedworkspace awareness.

Observational studies on face-to-face collaborations ha-
ve found that in coordinating work activities all of our per-
ceptual abilities are used to maintain knowledge about oth-
ers’ interactions with shared artifacts [16]. Gutwin and
Greenberg [9] have shown that better support for workspace
awareness in groupware systems can improve the usability
of these shared computational workspaces.

Several CSCW projects have considered support for
2D workspace awareness. One approach is to include new
interface components –awareness widgets– in the user in-
terface to support loosely coupled styles of collaboration.
This means that the co-workers can perform their activities
in a parallel, but coordinating, way.

The most known 2D awareness widgets are the radar
views, multi-user scrollbars, telepointers, WYSIWID (what
you see is what i do) view, and teleports. Gutwin et al.[10]
conducted experiments that examined the usability of these
widgets added to a real-time distributed groupware system
for construction activities (moving, arranging, and aligning
objects in 2D space) among nine pairs of computer science
students. Some important findings of their work are:

� “... the idea of workspace awareness should cover
more than just knowledge of others’ interactions with
the workspace; it also includes knowledge of the state
of the workspace and its artifacts, and of your own
actions within that context... Global overviews seem
particularly useful in this light”;

� “It is commonly thought that distraction is caused by
perceptual information that draws our attention, but
distraction may have as much to do with interpreta-
tion difficulty ... the awareness information must be
easily interpretable regardless of where it is presented
... one way of simplifying interpretation is to build on
people’s existing knowledge of the workspace”;

� they reinforced the principle stated by Dourish and

Belloti [3] that awareness information should be passive-
ly collected and distributed by the system, rather than
explicitly generated by the participants.

Later, an experiment to compare two versions of a group-
ware interface – one with basic miniature and the enhanced
miniature or a radar view – was thoroughly performed and
they concluded that radar view providing “indications of
other person’s location, the location of his and her cursor,
and the objects that he or she moved ... helped people com-
plete some tasks more quickly and more efficiently” [9].

The rapid emergence of 3D virtual environments pro-
pelled researches in 3D manipulation metaphors [1, 17, 2]
and 3D workspace awareness widgets. Recently, Dyck and
Gutwin [4] did studies on some 3D workspace awareness
widgets for maintaining the locations, perspectives, and the
proximities of co-workers. Their experiences suggest that
the embodiment enhancements (explicit representation of
the embodiment of each co-worker in the workspace), par-
ticipant list enhancements (explicit representation of data
about the co-worker), and alternate views of the workspace
(explicit representation of different perspectives on the work-
space) play an important role in supporting such kind of
awareness.

On the basis of the reported empirical experiments, we
designed three awareness widgets with use of MTK [11, 15]
for supporting 3D construction tasks among a small size of
participants.

3 CoMo: A Collaborative Environment

The underlying architecture of CoMo comprises three dis-
tinct classes of application on the top of a high-level dis-
tribution platform: geometric modeling server, user work-
space application, and group manager server.

Network

Modelling Server

User Workspace

Model
Geometric Graphics Facilities

Graphical Model

Graphics Facilities

Graphical Model

Model
Graphical

Floor Control

User Workspace

User Workspace

Server
Group Manager

Session

Interface

Group Interfaces

3D-Model Interfaces

Config Interface

Graphics Facilities

Graphical Model

Group Manager

Figure 1: An overview of our proposal

In this approach, thegeometric modeling kernelre-
sides in a central server. In the current version, an instanti-
ation technique, extrusion and boolean operations are pro-



vided for constructing polyhedral objects. Conventional ge-
ometric transformations (translation, rotation, and scaling)
are also supported.

The visualuser workspaceinterface is very simple.
It consists of one scene window, one 3D radial window,
and one participant list window. The workspace at each
participating machine runs under the control of a X win-
dow system. We used the built-in set of widgets provided
by GTK+ [8] to implement these windows. It is because
that GTK+ provides a uniform handling of local and net-
worked events. A participant directly interacts with ob-
jects in the scene window by clicking and dragging the
box/sphere draggers provided by MTK, which, on its turn,
accesses the functionalities of OpenGL [12] for efficient
rendering (Section 4).

The separation ofgeometric modeling kernelfromuser
workspaceallows a participant to personalize her/his inter-
face by setting rendering and manipulation parameters in
accordance with local hardware capabilities. Furthermore,
since the geometric decisions are under central control, de-
sign issues for a robust monolithic modeling system are ap-
plicable to the geometric kernel. Agraphical representa-
tion of the underlying 3D geometric model is replicated and
sent to the participating machines on demand. In this way,
graphics hardware acceleration features may be better ex-
plored to maximize local performance.

Several users may interact together with the shared 3D
model. For avoiding conflicts in inputs and providing group
awareness, there is agroup manager server. This server
holds a repository containing information about users con-
nected to session, policies for group joins, and a floor con-
trol mechanism. For simplicity, and without deviating from
the main objective of our work, we consider that the floor
control strategy is on the basis of token-passing. Each ma-
nipulable geometric object has its own token. When a token
is associated to a member, she/he becomes the owner of the
corresponding object and nobody can access that object un-
til its release.

The communication channels are supported by the avail-
abledistributed object environment– a freeware MICO [14],
which is an implementation of the CORBA specification [7].
CORBA is an object-oriented infrastructure that allows ob-
jects communications, independent of specific platform and
techniques used to implement these objects. The CORBA
core hides low-level details of platform-specific networking
interfaces, allowing developers to focus on application de-
velopment, instead of having to build the network commu-
nication infrastructure. The CORBA objects and their inter-
faces (methods) are specified via IDL (Interface Definition
Language). Therefore, they can be transparently invoked in
the remote way. The CORBA specification includes sev-
eral services, such as Naming, Transactions, Concurrency
Control, and Event, that facilitate the development of dis-

tributed object applications, are also included.
In the implementation of CoMo, Naming Service is

used to name and categorize the geometric, graphics, and
group information, while Event Service is applied to de-
couple the event producers and consumers and to provide
facilities for reliable one-to-many communication through
one (or more) event channel [6]. More than one event chan-
nel are allocated for active and passive asynchronous data
sending.

The Event Service is used in graphical model repli-
cation. We adopted the push-model configuration with one
event channel: the graphics model residing in the 3D-model
manager is the master and the replicated models in the user
workspaces are slaves. Whenever a change occurs in the
geometric data, the master graphics model posts the event-
data (updated graphics data) into the channel and the slaves
(the slave/replicated graphics model) consumes the event-
data from this channel (Figure 2).

DigGraphicsDigGraphics

Object

DigGraphics

Object
Geometric

CORBA

Flattened Graphics Objects 

Graphical

��
��
��
��
��

��
��
��
��
��

User Workspace

���
���
���
���
���

���
���
���
���
���

User Workspace

��
��
��
��
��

��
��
��
��
��

User Workspace

��
��
��
��

��
��
��
��

M
od

el
in

g 
Se

rv
er

Figure 2: Graphics objects replication

Nevertheless, we also have graphical information that
must be replicated but not be retained for enhancing the
group awareness, such as the current viewing volume of
each participant and their interaction artifacts, as will be
explained in section 5. For this reason, there is a second
event channel for conveying these data. Whenever a par-
ticipant changes the state of her/his interaction artifact, the
local graphics model multicasts the updated data to others’
machines.

A third event channel is necessary for thegroup man-
ager serverto communicate with all the participating ma-
chines whenever the state of the group session is changed
(e.g. joining or leaving of a participant).

4 MTK: A Graphics Toolkit

We give in this section a brief description of MTK, also de-
signed and implemented by our research group at State Uni-
versity of Campinas. This toolkit plays an important role in
the design and implementation of our awareness widgets.

MTK [11, 15] is a C++ programming library aiming
at providing a simple, direct interface to the fundamental
operations of 3D graphics rendering and interactions. Its



design differs essentially from the most known higher level
3D graphics toolkits, such as Open Inventor [18]. Instead
of integrating application and the user interface into the
same development environment, MTK provides a loosely-
coupled graphics development environment.

MTK includes a subset of the conventional 3D graph-
ics library functionalities, namely the set of basic geometric
objects, display list (wrapped by theGeometric Mod-
els class), multiple viewing (wrapped by theCameras
class), multiple lighting (wrapped by theLights class),
and picking/selection (wrapped by theSelection class).
In this way, for visualization purposes, the coupling of an
application-specific 3D model and MTK may be reduced to
a data format conversion problem.

Additionally, MTK also provides interaction facilities:
(1) a 3D-cursor for indicating visually a virtual 3D-mouse
position (3D Cursor class), (2) a set of pictorial repre-
sentations to improve the 3D depth perception (Guides
class), (3) a set of pictorial representations that are relevant
to realize 3D interaction metaphors (Draggers class), and
(4) a way to customize the relationship between a geometric
element and a 3D interaction metaphor (Constraints
class).

The application-dependent geometry is useful in mov-
ing controllably a virtual 3D-mouse on the surface of any
object in 3D scenes with a 2D-mouse. The position of the
2D-mouse is “unprojected” in 3D space through an implicit
function that defines the surface. A 3D-mouse can also
move freely in a 3D scene. In this case, we constrained
the 2D-mouse movements on either xy- or yz-plane inR3

according with the predefined operation mode. The posi-
tion of the virtual 3D-mouse is visually represented on the
screen by the conventional 2D-cursor in cross-hair shape.
All these methods for managing a virtual 3D-mouse are en-
capsulated in a3D Cursor object. Figure 3 shows a 3D-
cursor on the (a) outside and (b) inside of an object in a 3D
scene.

(a) (b)

Figure 3: 3D Cursor

Both Draggers and Graphics Models objects
are selectable when a user picks on their elements –Han-
dles /(Sensitive)Parts and MtkElement objects, re-
spectively – and respond by delegating the request to appli-

cation-dependent objects for handling them properly. They
also have capabilities for redrawing by themselves when
their attributes are changed. At this point, one may argue
what is the difference between them. The difference lies in
the way that they handle the subsequent input events. Pre-
defined subsequent 2D positioning events are captured by
a dragger and transformed into 3D points. Then, the point
is passed to the client for further processing. Whereas a
geometric model is passive, in the sense that it just passes
the event to the client for specialized dealing. The unam-
biguous 2D–3D mapping in a dragger is achieved by using
a Constraints object to which each sensitive part must
refer. Currently, four subclasses ofDraggers are imple-
mented:

� box: with a box geometrical representation. It com-
prises twenty-six sensitive parts: eight vertices, twelve
edges, and six faces (Figure 4a).

� sphere: with a spherical geometrical representation. It
comprises six sensitive parts: the sphere surface, three
orthogonal rings, a handle, and the handle vertex (Fig-
ure 4b).

� reference frame: with a three-orthogonal-axis geome-
trical representation. It comprises thirteen sensitive
parts: six edges and seven vertices (Figure 4c).

(a) (b) (c)

Figure 4: Draggers

It is worth noting that the visual feedback of draggers
and geometric models is totally decoupled.

Summarizing, MTK is comprised of theMtkCore
class and eight “independent” abstract classes:Graphics
Models , Cameras , Lights , Selection , Guides ,
Constraints , Draggers , and 3D Cursor (Figure
5). The MtkCore coordinates the interaction between
these classes by delegating requests in order to realize a
semantic action. For example, theSelection passes to
the MtkCore the identifier of selected elements and the
methodcameraPointer() in MtkCore is responsible
for deciding whether a part of a dragger or a graphics model
should be notified to handle the subsequent events.

5 Awareness Widgets

Our design is based on the hypothesis that a good visual
feedback (perception) for individual actions in a single-user



SelectionGeometric Models Lights

mtkElement

mtkCore

cameraPointer()

Client

3D CursorGuides Draggers

Line Plane Sphere

Sphere Reference FrameBox

Reference Triad Grid

Cameras

Parts

Constraints

Object-Const. Non-Obj.-Constr.

2D Cursor

Model-depend.

Figure 5: MTK framework

Figure 6: CoMo’s Interface.

application may be valuable in a collaborative workspace,
when more than one user have a common object of inter-
est. Otherwise, it is sufficient to keep a simplified view
of the entire workspace in order to maintain “group aware-
ness” and to facilitate activities synchronization whenever
it is required.

Hence, in addition to the conventional drawing area
(the scene view) where users can interact individually and
directly with the 3D model with the use of draggers or 3D
cursors, two windows are included in the interface of CoMo
for conveying a coarse global view of the state of the work-
space: a listbox that contains the participant names and a
second drawing area (global view) where a simplified ver-
sion of the global overview of the 3D shared workspace is
presented (Figure 6).

Each participant’s screen view occupied most of their
screen. By manipulating the camera parameters, partici-
pants can refer to particular objects or have a particular view
of the workspace while performing their own goal tasks. A
participant can also adjust her/his viewing parameters to be
the same as the ones of another participant by clicking on
the corresponding name in the participant list. The user can
also back to her/his previous view by undoing the action.

To each co-worker is assigned a unique color when
she/he joins to the working session. This color is consistent
across other participant’s views and across the windows in
each individual workstation.

5.1 Participant List

The paricipant list is useful for locating a particular co-
worker. From it we can promptly find out which users are
currently logged in and which color each of them is as-
signed to. From the color attribute, we may locate not only
their position in the shared workspace but also their current
activities, as explained in Section 5.2.

The control of participant flux is carried out by the
group manager server, which passively updates its data base,
generates and distributes an event to all of the participating
machines whenever a participant joins to or leaves a work-
ing session. Because the window manager GTK+ supports
networked events, the invocation of the appropriate event
handler for updating the participant list at each participat-
ing machine is easily programmable.

Differently from the traditional participant lists, which
typically contain images or model of each participant, our
participant list is a simple scrolled list with colored partici-
pant’s names (at the bottom of Figure 7). This reduces the
occupation of screen space, without missing the basic group
awareness information. We will see that from the list a user
may identify from her/his assigned color the location and
activities of each co-worker in the 3D shared workspace.
Observe that in theglobal viewwindow the volume view of
each participant is visualized.

Figure 7: Global view and participant list.



5.2 Global View

Because of the narrow field view offered by computer dis-
plays, the co-workers can easily be out-of-view in a relaxed
WYSIWIS system. As a solution for this frequent aware-
ness missing, alternate views of the shared 3D workspace
are recommended. Dyck and Gutwin [4] developed the
Grand Tour widget, a 3D version of the radar view. The
Grand Tour shows the view of a distant camera that is con-
stantly in motion (orbital view).

We developed a similar widget calledglobal viewto
provide a view of the entire workspace. The main differen-
tial of our approach relies on the possibility in setting the
desired viewing parameters on demand. Following the rec-
ommendation of Ellis et al [5] that “a good group interface
should depict overall group activity and at the same time
not be overly distracting”, only the currently active 3D cur-
sors and draggers are shown in theglobal view. Whenever
a user interacts with them, a networked event is generated
and multicasted to all the rest of participating machines for
maintaining an ongoing awareness of others.

Besides the currently active 3D cursors and draggers,
the volume view of each participant is displayed in a col-
ored wireframe box in theglobal view, in order to enhance
the perspective awareness.

5.3 Teledraggers

As already mentioned, the draggers indeed emulate 3D in-
put device. On the basis of registered constraining func-
tions, they are able to map a 2D input point into a 3D point.
Moreover, they can redraw by themselves when their at-
tributes are changed by the application. One useful appli-
cation of a dragger in a single-user system is the pictorial
representation of a 3D manipulation metaphor [13], which
is calledmanipulator. It captures a sequence of 2D input
points which is translated by the manipulator in a semantic
value, such as displacement, rotation angle, etc. This in-
formation is then applied not only on the dragger itself but
also on the corresponding controlled 3D model. For this
reason, from the dragger movements the user can infer the
activities that the other participant performs in the shared
3D workspace.

As already mentioned, the 3D application model re-
sides in thegeometric (modeling) server. Hence, the activ-
ity awareness of CoMo may benefit from the model-dragger
decoupling design of MTK. An immediate semantic feed-
back may be provided while the user is interacting with a
dragger, even though a geometric server needs longer time
to accomplish a task, as illustrated in the sequence diagram
of Figure 8. Observe that the information of the dragger
is replicated to the other participating machines via another
event channel. Hence, the latency (the update speed of an
image in response to a user action) of a dragger is less than

the latency of any 3D model.

ManipulatorGraphics ModelDragger Client

cameraPointer()

draw()

interaction()

mtkCore

endPicking()

Selection

MTK

3DPoint()

Change()

draw()

applyMatrix()

SemanticAction()

Input()

User

sendGraphicsElements()

Figure 8: Interaction sequence

For avoiding visual clutter in the scene view, the state
of teledraggers manipulated by other participants can only
be followed from theglobal view. Figure 9, where we can
see three teledraggers associated to three distinct partici-
pants, is a zooming view of the scene presented in Figure 7
from one participating machine.

Figure 9: 3 teledraggers in the global view.

5.4 A 3D Telecursor

In MTK a 3D cursor is a positioning widget that represents
the position of a virtual 3D-mouse under control of a user.
In general, it conveys the point of interest of its user. The
movements of virtual 3D-mouses are restricted toxy-, yz-
or xz-planes at time. As shown in Figure 3, the 3D cur-
sor is visually represented by the conventional 2D-cursor
in cross-hair shape whose “unprojected” axes are parallel
to the axes of viewing coordinate system of its user. This
implies that the orientation of cursor axes is dependent on
the viewing direction of its user. This leads us to modify
the shape of the 3D cursor slightly for making it more suit-
able to indicate the viewing direction of its user. We simply



added a point on the extreme of the negativez-axis of the
old version of 3D cursor, as illustrated in Figure 10.

Figure 10: A new shape of 3D Cursor

For the same reason given in section 5.3, the 3D tele-
cursors associated to the other participants are only dis-
played in theglobal viewwith the corresponding color at-
tribute.

6 Results

In this section we attempt to show the dynamics of the in-
terface of CoMo through some snapshots.

We consider that there are three participants (Gonzaga,
Ting, Pedrita) sharing a 3D workspace comprising one toy
car, one camera, and a lighting source. Reference axes and
a reference plane are included to enhance 3D perception.
Gonzaga is working on a machine with Creator 3D graphics
accelerator (UltraSPARC/60 – rocas), Ting is working with
a machine without graphics accelerator (UltraSPARC/1 –
buzios), and Pedrita is logged at a machine with Elite 3D
graphics accelerator (UltraSPARC/10 – dunas). For ma-
chines with and without graphics accelerator, Gouraud and
wireframe shading were, respectively, chosen (Figure 11).

Observe that in theglobal viewwindow at each par-
ticipating machine the volume view and the interaction tool
of each participant is presented. Ting (in green) is inter-
acting with a 3D cursor, Gonzaga (in magenta) with a box
teledragger, and Pedrita (in blue) with a sphere teledragger
(Figure 9).

Figure 12:Global viewof Gonzaga.

Figure 12 shows the consistent updates in theglobal
view at the machine where Gonzaga works, after Pedrita

having changed her viewing parameters and Ting moves her
3D cursor (observe that it is outside of her view field). This
ensures both the perspective and the activity awareness.

7 Concluding Remarks

On the basis of existing studies on the workspace awareness
in real-time groupware systems, a solution for enhancing
the 3D workspace awareness in a collaborative geometric
modeller, typically with a small size of participants, was
presented. A scrolled participant list, an alternative for 3D
radial view, volume view, 3D telecursors, and 3D teledrag-
gers have been used in our implementation.

To the best of our knowledge, 3D telecursors and 3D
teledraggers are new interaction techniques that we have
developed. A 3D telecursor results from the combination
of the functionalities of a classical 3D telepointer (provid-
ing the location awareness) and the nose ray (identifying
the line of sight) [4]. From our observations, a 3D teledrag-
ger has shown to be effective in supporting task awareness.
Moreover, because of a small size of participants, it is possi-
ble to display all of the interaction artifacts in the 3D radial
view, without window clutter. Moreover, we may avoid the
users being distracted when they are performing their own
goal tasks in the scene sub-window.

Nevertheless, from our point of view the main contri-
bution of this work is to have demonstrated that, concep-
tually, several individual awareness mechanisms designed
to single-user applications can be easily adapted to provide
workspace awareness. The reuse is greatly facilitated if the
implementation of those individual awareness mechnisms
follows the loosely-coupled approach, such as the architec-
ture of MTK.

As further work, experiments must be carefully con-
ducted to evaluate the usability of the interface of CoMo,
and consequently, the two new widgets.

References

[1] Eric A. Bier. Snap-dragging in three dimensions. In
Rich Riesenfeld and Carlo Sequin, editors,Proceed-
ings of the 1990 Symposium on Interactive 3D Graph-
ics, pages 193–204, Snowbird, Utah, 25-28 March,
1990, march 1990.

[2] D. Brookshire Conner, Scott S. Snibbe, Kenneth P.
Herndon, Daniel C. Robbins, Robert C. Zeleznik, and
Andries van Dam. Three-dimensional widgets. In
ACM Symposium on Interactive 3D Graphics, Special
Issue of Computer Graphics, volume 26, pages 183–
188, 1992.

[3] P. Dourish and V. Bellotti. Awareness and coordina-
tion in shared workspaces. InConference on Com-



Network

Figure 11: An overview of a working session.

puter Supported Cooperative Work (CSCW’92), pages
107–114, Toronto, Ontario, 1992. ACM Press.

[4] Jeff Dyck and Carl Gutwin. Awareness in 3d
collaborative workspaces. InACM Graphics In-
terface (GI’2002), http://hci.usask.ca/
publications/2002/groupspace-gi/
index.xml , 2002. to appear.

[5] C. Ellis, S. Gibbs, and G. Rein. Groupware: Some
issues and experiences.Communications of the ACM,
34(1):38–58, 91.

[6] OMG Object Management Group. Corba event ser-
vice specification - v1.0.http://www.omg.org ,
1993.

[7] OMG Object Management Group. The common ob-
ject request broker: Architecture and specification -
version 2.0, 1995.

[8] GTK+. Gtk+ - the gimp toolkit. http://www.
gtk.org/ .

[9] Carl Gutwin and Saul Greenberg. The effects of
workspace awareness support on the usability of
real-time distributed groupware.ACM Transactions
on Computer-Human Interaction (TOCHI), 6(3):243–
281, Sept. 1999.

[10] Carl Gutwin, Mark Roseman, and Saul Greenberg.
A usability study of awareness widgets in a shared
workspace groupware system. InComputer Sup-
ported Cooperative Work, pages 258–267, 1996.

[11] M. de G. Malheiros, F. N. Fernandes, and S. T. Wu.
Mtk: A direct 3d manipulation toolkit. InSCCG’98
Proceedings, pages 81–88, Brastilava, april 1998.

[12] Jackie Neider, Tom Davis, and Mason Woo.OpenGL
Programming Guide: The Official Guide to Learning
OpenGL, release 1. Addison-Wesely, 1993. ISBN 0-
201-63274-8.

[13] Jenny Preece, Yvonne Rogers, Helen Sharp, and
David Benyon. Human-Computer Interaction.
Addison-Wesley Pub Co, 1994.

[14] Arno Puder and Kay Roemer.MICO: An Open Source
CORBA Implementation. Morgan Kaufmann Publish-
ers, Mar 2000.

[15] L.G. Silveira Jr and Shin-Ting Wu. Towards con-
sistency in a heterogeneous collaborative geometric
modeling environmen. InProceedings of SIACG
2002, pages 139–148, Guimar˜aes, Portugal, 1–5 July
2002. ACM-Eurographics.

[16] J.C. Tang. Findings from observational studies of
collaborative work. International Journal of Man-
Machine Studies, 34(2):143–160, 1991.

[17] Maarten van Emmerik. A direct manipulation tech-
nique for specifying 3D object transformations with
a 2D input device. Computer Graphics Forum,
9(4):355–361, 1990.

[18] J. Wernecke.The Inventor Mentor. Addison Wesley,
1994.


