
DSVOL II - A Distributed Visualization and Sonification Application Communicating via an
XML-Based Protocol

VERIDIANA CHRISTIE LUCAS SALVADOR1, ROSANE MINGHIM1, HAIM LEVKOWITZ2

1 Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, Brasil

{ veri, rminghim} @icmc.sc.usp.br
2 Institute for Visualization and Perception Research, Department of Computer Science, University of Massachusetts

Lowell, Lowell, MA, USA
haim@cs.uml.edu

Abstract: Distribution of the visualization process over the World-Wide Web allows remote access to
expensive resources, and the cooperation amongst teams of experts that are located in different places. This
paper presents an architecture and a corresponding prototype implementation of a distributed system for
visualization and sonification of scientific data. The distribution is accomplished by the addition of
visualization and sonification servers, accessible over the Internet, and implemented using an XML-based
SOAP (Simple Object Access Protocol) protocol. The system is an evolution of a previously-developed
prototype, with improvement in the visualization and in the distribution aspects of the architecture. Former
distribution scheme employed CORBA (Common Object Request Broker). A discussion on the use of both
distribution tools is given in the light of visualization tasks.

1 Introduction

Some classical problems in scientific visualization

such as support for collaborative work, handling of large
data sets, and taking better advantage of remote hardware
resources can be tackled by using distributed
architectures.

With the currently available technology it is possible
to apply distributed computation concepts to many
applications. That is the case for visualization. In the field
of visualization many times systems do not reach a good
number of potential end-users as fast or as effectively as
they should. Part of the reason for that has to do with most
systems being difficult to access, use, and install.
Additionally, they are demanding in computational
resources, and very rarely adapted to user’s needs.
Distribution of system components as well as providing
access to the system on the Internet may come to
contribute to the relief of some of the impairing aspects of
visualization.

Although a research platform, the DSVol
(Distributed Sound for Volumes) system intends to,
among other things, work on ways to make visualization
and sonification functions available to end users of real
applications, in consonance with the goals of the project
PowerVis, in development at ICMC – USP, Brazil, with
cooperation with UMass Lowell, USA.

With that motivation, DSVol II is a prototype,
evolved from a previous prototype of a system (DSVol),
which implements an architecture for distributed
visualization and sonification on the Internet, in a flexible

and inexpensive way. The use of sound to convey
information is called sonification. It can be a valuable tool
in some visualization applications. In DSVol, a
visualization server is responsible for executing
demanding mapping tasks while a sonification server is
responsible for calculating and processing sound streams,
to be presented at the user end (the client), with rendering
and display processed on the client side. The system is
accessible on the Internet.

The implementation of this architecture, presented
here, uses XML (eXtensible Markup Language) as a
means to achieve data and parameter passing between
system modules. This is compared with the previous
version, which used CORBA as the distribution platform.

Interaction and sonification tasks have also evolved
from a previous version, and are presented here. They are
implemented in C++, as extensions to the visualization
system. At the core of the system is VTK (The
Visualization Toolkit), also developed in C++.

DSVol has a JAVA interface, which is the gateway
to Internet access, communicating with the C++ code via
JNI (Java Native Interface).

Section 2 presents an overview of previous work on
distribution for visualization purposes. Section 3 describes
the architecture of DSVol. Section 4 presents the
interaction tasks in DSVol, responsible for triggering
visual and aural mappings. Section 5 describes the
implementation of the communication between modules
using SOAP, a tool for communication using XML, and
Section 6 outlines some of the conclusions drawn from
this work.

2 Distr ibuted Visualization

Some typical problems of visualization may be
suitable for use of distributed architectures. Data sets are
becoming too large and, sometimes, unbearable for
conventional visualization systems and local disks. Many
times these data sets are remotely located causing
problems of bandwidth and latency of data transfer. An
important feature of the research in scientific visualization
due to its multidisciplinary nature is the collaborative
work between researches in different areas, sometimes
located at different places. These cases demand that data
sets and results be shared. Visualization tasks are also
demanding in computational resources that many times
cannot be supported at the user’s desktop. One way to
improve resource access is by processing part of the
visualization pipeline on a remote hardware.

One of the initial works on distributed architecture
for visualization was presented by Ang, Martin, and Doyle
[10]. They developed VIS, a visualization tool integrated
into the Mosaic browser as a visualization service. VIS
distributes the generation of 3D models from volume data
amongst available hardware.

The VTK library was extended to allow the
visualization of extremely large, time-varying data sets
using parallel and distributed computing resources in a
work developed by Ahrens et al. This work distributes
processes via MPI and is not available over the Web [11].
Wood, Brodlie, and Wright discussed different distributed
scenarios for implementing Web-based visualization
platforms [12]. Engel et al. demonstrated how to utilize
local low-end desktop and remote high-end graphics
hardware for interactive visualization of tomographic
image data combining local, remote, and hybrid rendering
techniques [21]. Frisch and Ertl addressed a CORBA
based connection between a finite element solver PAM-
CRASH (from ESI Group, France) and the visualization
tool CrashViewer (developed at Stuttgart University,
Germany) [22]. Aeschlimann et al. used active frames,
mobile objects containing data and programs to
manipulate the data, to describe a framework for building
interactive distributed visualizations (through a Ethernet
network) of large scientific data sets, using the VTK
library to perform the visualization tasks [13]. Zunino et
al. presented a platform-independent visualization system
for visualizing particle tracing in computational fluid
dynamics, using a distributed architecture based on Sun
Microsystems technology Jini to perform distribution
tasks, and Java 3D library for the visualization phase [19].
Liere et al. presented a distributed blackboard architecture
for simulation and scientific visualization using the
TCP/IP protocol for communication between modules.

The visualization module uses the VTK library to perform
visualization tasks [20].

Alternative approaches to distribute visualization
processes were investigated by several research efforts,
such as collaborative environmental data analysis [12],
remote surgical training [14], and remote access to volume
visualization algorithms that operate on local user data
[15].

Like some of the work quoted above, the DSVol
prototype uses (and extends) the VTK library to perform
visualization tasks. Unlike these, DSVol proposes a
visualization system that provides visualization pipeline
distribution over the Web. To perform distribution tasks,
we adopt the use of SOAP [7], since DSVol is accessible
over the Web and SOAP is an XML-based protocol
developed to distribute objects over the Internet. XML [5,
6] is a format for structured documents and data on the
Web.

 The idea behind SOAP is to use well-formed XML
as a wire protocol that can be transported to a remote
system. With the development of specific technologies for
remote exchange of information such as SOAP, it brings
up questions on how they can affect the access of
information in visualization, particularly when alternative
channels of data mapping are available, as it is the case
with sonification. The presence of different forms of
representation (aural and visual in our case) poses an
additional challenge to the visualization pipeline, in that
various demanding tasks are done at the same time on the
same data to result in sometimes different entities
(geometric objects and sound streams) to be displayed
together in the same scene.

The architecture presented here takes as a basis a
pipeline distribution scheme and includes the sonification
element in it, proposing an implementation via XML. It
uses JAVA as a tool for Web programming, and VTK
(with added extensions) as the core visualization software.
We also compare the results with the previous version of
the system, which used CORBA as the communication
platform amongst remote modules, and comprised a more
restricted number of interaction processes.

3 DSVol – Distr ibuted Sound for Volumes

DSVol is a prototype of a distributed visualization

system that uses sonification to support volume
visualization tasks [1]. This prototype architecture
comprises three modules integrated by a common Java
interface: a client, which is responsible for interaction and
sonification tasks; a visualization server, responsible for
visualization calculation; and a sound server, responsible
for the calculations involved in the sonification tasks (see
Figure 1). The client invokes methods from the servers

defined in WSDL (Web Services Description Language)
files. Each server describes its form of access through one
of these files. DSVol modules are written in C++, and
communicate with the Java interface via JNI (Java Native
Interface) [2]. The Visualization Toolkit (VTK) [3], a
visualization class library written in C++, is used to
provide basic visualization functionality to client and
servers. The communication amongst the client module
and the visualization and sonification servers uses the
XML-based protocol SOAP (Simple Object Access
Protocol) [5, 6, 7]. These communication elements are
described in detail in section 5.

Figure 1 – DSVol Structure.

In the architecture, the visualization server is

responsible for processing part of the visualization
pipeline. It adopts the reference model proposed by Upson
[4] for client-server visualization. This model considers
the visualization process as a pipeline where, starting from
the data set, a number of steps are followed: load, filter,
map, and render (see Figure 2). Adopting this basic
pipeline, the visualization server in DSVol is responsible

for loading, filtering and mapping of the data set.
Rendering and display are performed at the client. The
vertical line on Figure 2 indicates the distribution of
pipeline tasks between server and client.

Figure 2 – DSVol pipeline.

The mapping realized on the server side is sent to the

DSVol client module, where the transformed data are
rendered and presented.

The DSVol sound server is responsible for
calculating the sound to be played on the user hardware
(DSVol client module), based on information sent by the
requiring program (in this case, the DSVol client). This
module provides the implementation of methods that
calculate the sound properties of different sounds that are
necessary for the various sonification tasks associated
with the graphical processes of DSVol. The methods of
the sound server receive specific parameters depending on
the kind of sonification task to be realized. In the current
version of the server, it calculates specific frequency
values that will be played on the client side, and sends it
back to the client. The server is evolving to accomplish
more complex sonification mappings. On the client side,
the calculated frequency values, as well as volume and
timbre, defined by the user through the Java interface, are
transformed in MIDI messages and played back. In
DSVol, the sonification server and visualization servers
are accessed on demand by the different graphical
processes available at the client. Those processes are
described in the next section.

4 DSVol Graphical Processes

The DSVol client module is composed of five

graphical processes: Progressive Display, 2-D Scan,
Sound Probe, Grid Display, and Plane Scan. Each
graphical process is responsible for allowing the user to
interact with the volumetric scene. They are also
responsible for one or several distinct sonification tasks.

In the Progressive Display the volume is presented
slice by slice and the sound of the desired feature is played
as each slice is shown (see Figure 3). It is used to frame

SOAP Messages

SOAP Messages

Visualization
Server

Data Reader

Data Filters

Mapper

Sound Server

Coordinate

Probe

Grid

2D Scan

Plane Scan

Client

Data Files

Renderer

Interactor

WEB SERVERS CLIENT

Data F M R Image

Filtering Mapping Rendering

DSVol Visualization Server DSVol Client

sonification tasks that vary with the change in position
over a particular axis. During this process, the sonification
tasks help users understand the progress or structure of
some scalar value or feature in their data as the
presentation evolves. It adds information without
increasing visual clutter.

Figure 3 – Progressive Display Process.

The Progressive Display process does not allow user

interaction during presentation. To allow user interaction
between presentations of neighboring volume slices,
another graphical process was implemented: the Plane
Scan. Here, the user can move a plane forward and
backward and listen to features related to the slice as it is
presented (see Figure 4). This visual process allows users
to explore features of the volume, slice by slice, on any
desired axis. Particular features on a slice can be sonified
in this process, while its movement is controlled by the
user.

Figure 4 – Plane Scan process.

Figure 5 presents the fourth graphical process
implemented by DSVol, the 2-D Scan. In this process, the
user chooses a volume slice using the previous tool, and
then scans this slice listening for information about the
volume. The sonification tasks of the 2-D Scan is meant to
help users analyze the contents of a specific volume slice,
scanning or tracing paths on this slice. It adds an
additional dimension to the presentation, which can be
compared to, or combined with the dimension already
presented by color. The position being sonified is
presented by a little square under control via the cursor.

Figure 5 – 2-D Scan process.

The Sound Probe graphical process allows the

analysis of volumetric features inside the whole volume.
In this process, a tetrahedral probe is presented inside the
volume (see Figure 6). This probe can be re-dimensioned
and moved by the user. It can also be selected as the etire
volume. The sound produced during the process
represents a feature or value of scalar nature inside the
probe, helping the user understand data located inside the
probe, which may be hidden by graphical presentation or
not represented there.

Figure 6 – Sound Probe process.

The Grid Display graphical process allows the direct

analysis of values or features on the data grid that may be
lost during the mapping process, or hidden in the rendered
image. This process projects the data mesh onto the
screen, and the user can listen to data values pointing the
mouse on a desired position of the grid (see Figure 7).
Because of the relation between the data on the grid
(being sonified) and the values on the display (being
visualized) it is possible for the user to make mental
associations between the two elements.

Figure 7 – Gr id Display process.

These five processes offer a sonification framework

to assist visualization tasks. They were added to the
interaction already existing in VTK, and are meant to
support access to the sonification functions. Of these
interaction functions, two (the 2D scan and the plane scan)
were added also to the first version of DSVol.

A Java interface gives access to these interface
processes on the Web (see figure 8).

Figure 8 – DSVol Java Inter face.

In this framework it was our intention to allow

remote access to costly processing, such as visualization
mappings (in the visualization server) and sound
calculation and processing (in the sonification server).
Meanwhile interaction and rendering would continue to be
done at the user’s end, that is, in the client module of the
system. Additionally, Web access to the system is an
important feature of the environment.

The main difference between the first version of
DSVol system and the current one is the way that
elements of the system communicate. The first version
used communication between modules via CORBA. In the
current version, DSVol modules communicate via SOAP.
The next section presents details of the communication
between the elements of DSVol implemented by the
current version.

5 Communicating on the Web via SOAP

XML is a meta-language that was designed to

describe data. It was created as a way to structure, store,
and send information. XML is becoming a common tool
for data manipulation and data transmission over the Web
[6].

Using XML to handle data sets can reduce
incompatibility amongst visualization systems, and help
cooperation amongst researches, since XML is stored in
plain text format, and is independent of hardware,
software, and application.

One visualization application that uses XML as a
way to structure the data set is MoDL (Molecular
Dynamics Language) [8]. MoDL is an XML application
that provides visualization of chemical simulation data
over the Web, where the simulation data is marked up,

transmitted, converted to a VRML world, and visualized
using a VRML plug-in inside a Web browser.

The DICE (Distributed Interactive Computing
Environment) is a toolkit that uses XML as a way to
structure data [16]. It is designed to allow interactive,
runtime visualization of codes running on a high
performance platform from the users desktop.

SOAP (Simple Object Access Protocol) uses XML to
allow applications to communicate over the Web [7]. The
current version of DSVol uses SOAP as a protocol for
exchanging information amongst client and servers, as
opposed to the first prototype, which employed CORBA.

Web-access to DSVol capabilities, as well as ease of
setup, are required features. SOAP improves inter-
platform implementation where these two features are
fundamental [9].

Using this protocol, the DSVol client connects to the
visualization and sonification servers by specifying the
server URL, where the WSDL documents are located (see
Figure 9). The WSDL is an XML format for describing
the methods offered by the servers.

…
/ / Connect t o t he ser vi ce
I SoapConnect or Pt r Con;
Con. Cr eat eI nst ance(__uui dof (Ht t pConnect or 30)) ;

/ / Speci f y t he ser ver URL
Con- >Pr oper t y[" EndPoi nt URL"] =
 " ht t p: / / DSVol Ser ver / DSVol SOAP/ Vi sual Ser ver /
 Vi sual Ser ver . wsdl " ;

/ / Connect t o t he Vi sual Ser ver
Con- >Connect () ;
…

Figure 9 – Connection to the DSVol Visual Server .

The WSDL document, defined for the DSVol

visualization server, provides two methods that can be
accessed by the client. The first method, SetFile, receives
a VTK file, as an attachment, and saves it on the server
end. The second method, GetMapper, receives the iso-
surface values to be used as parameters for filtering,
followed by graphical mapping. After mapping, the
method serializes the result (using and instance of the
vktStructuredPointsWriter object) and sends it back to the
client. On the client side this result is rendered and
displayed.

The WSDL document defined for the DSVol
sonification server provides several methods to calculate
the sound properties for different sonification tasks related
with the graphical processes of DSVol, such as
CoordSonification, MaxSonification and MinSonification,
used on the Progressive Display process;
PopDensSonification, used on the Sound Probe process;
and GridSonification, used on the Grid Display process.

To handle SOAP requests on the server side, an ASP
listener is specified in the WSDL document, by
identifying an ASP file (see Figure 10). The ASP listener
provides additional processing, such as parsing and
verifying input and security, before processing the
contents of a SOAP message.

<def i ni t i ons>
…
 <ser vi ce name=' Vi sual Ser ver ' >
 <por t name=' Vi sual Ser ver Por t Type'
 bi ndi ng=' t ns: Vi sual Ser ver Bi ndi ng' >
 <soap: addr ess l ocat i on=
 ' ht t p: / / DSVol Ser ver / DSVol SOAP/
 Vi sual Ser ver / Vi sual Ser ver . asp' / >
 </ por t >
 </ ser vi ce>
…
</ def i ni t i ons>

Figure 10 – Visual Server WSDL file fragment.

On the client side, the parameters of each method

invoked are encoded in a SOAP request message (see
Figure 11). This SOAP request message is sent to the
server, where it is decoded and processed. The result of
the requested operation is encoded to a SOAP response
message, wich is sent back to the client.

…

/ / Bui l d t he SOAP Message

Ser i al i zer - >St ar t Envel ope(" " , " " , " ") ;

Ser i al i zer - >St ar t Body(" ") ;

Ser i al i zer - > St ar t El ement (" Get Mapper " ,

 " ur i : Vi sual Ser ver , " " , " m") ;

Ser i al i zer - >St ar t El ement (" I " , " " , " " , " ") ;

Ser i al i zer - >Wr i t eSt r i ng(_bst r _t (I)) ;

Ser i al i zer - >EndEl ement () ;

Ser i al i zer - >St ar t El ement (" SURFACE" , " " , " " , " ") ;

Ser i al i zer - >Wr i t eSt r i ng(_bst r _t (SURFACE)) ;

Ser i al i zer - >EndEl ement () ;

Ser i al i zer - >EndEl ement () ;

Ser i al i zer - >EndBody() ;

Ser i al i zer - >EndEnvel ope() ;

/ / Send t he message t o t he web ser vi ce

Connect or - >EndMessage() ;

…

Figure 11 – Creating the SOAP request message.

6 Conclusions

The previous version of DSVol used CORBA to
distribute visualization and sonification tasks. CORBA is
a vendor-independent open architecture for implementing
network based applications, developed by the Object

Management Group (OMG) [17, 18]. CORBA is a good
choice for projects that demand reliability and managing
of complexity [9].

On the other hand, CORBA is considerably difficult
to develop and employ, and sometimes the required costs
and effort for code development do not make up for
performance benefits. CORBA also can present potential
firewall security issues because it requires open network
connections to transmit data.

The current version of DSVol substituted CORBA by
SOAP. In contrast to the problems presented by CORBA,
SOAP provides the benefits of simplicity, ease of learning
and ease of implementation. It makes data more easily
understandable, and offers a simple solution for making
remote procedure calls via HTTP, which solves the
firewall security issues [9]. One disadvantage of SOAP is
the consumption of bandwidth in transit because of the
size of the text-based messages, and their demand on time
due to the need for extracting and parsing XML data. This
limitation will become less important as processor and
network speeds increase.

DSVol II, this second prototype of DSVol presents
an alternative solution for visualization on the Web using
distributed resources that, due to the use of this current
technology and inexpensive software is effective, low
cost, and flexible, both in adding visualization and
interaction tasks, and in providing pipeline distribution,
with potential for solving some of the problems
encountered in everyday visualization. Consecutive
versions of the system will be kept available at the site
www.lcad.icmc.usp.br/~DSVol.

Next steps in the project are the creation of an XML
structure for VTK files; the extension of the VTK library
to allow writing and reading of this structure; and the
extension of the sonification server to perform sound
synthesis by software. The goal is to have a complete
interaction model to work in a distributed manner over the
Internet, which encompasses the aspect of sonification as
a support tool.

7 Acknowledgments

We want to acknowledge FAPESP (Fundação de

Amparo a Pesquisa do Estado de São Paulo) for funding
this project.

8 References

[1] R. Minghim, V. C. L. Salvador, B. S. Freitas, M. C. F.
Oliveira, L. G. Nonato – “Distributed Sound For Volumes
– Data Analysis Using Distributed Visualization and
Sonification” , in Proceedings of SPIE - Visualization and

Data Analysis 2002, vol. 4665, pp. 379-390, January
2002, San Jose, CA, USA, 2002.

[2] Sun Microsystems, Inc – “Java Native Interface
Specification” , available at
http://java.sun.com/products/jdk/1.2/docs/guide/jni/spec/jn
iTOC.doc.html (April/16/2002), March 1997.

[3] W. J. Schroeder, K. Martin, W. Lorensen – The
Visualization Toolkit – An Object-Oriented Approach to
3D Grraphics, Prentice-Hall, 2nd Edition, 1998.

[4] C. Upson, T. Faulhaber, D. Kamins, D. Laidlaw, D.
Schlegel, J. Vroom, R. Gurwitz, A. van Dam – “The
Application Visualization System: A Computational
Environment for Scientific Visualization” , in IEEE
Computer Graphics and Applications, vol. 9, no. 4, pp. 30-
42, 1989.

[5] F. Arciniegas – C++ XML, New Riders Publishing,
First Edition, August, 2001.

[6] W3Schools – XML Tutorial, available at
http://www.w3schools.com/xml/default.asp.

[7] K. Scribner, M. C. Stiver – Understanding SOAP –
The Authoritative Solution, Sams Publishing, 2000.

[8] B. Arun, V. Chandru, A.D. Ganguly, S. Manohar –
“Molecular Dynamics Visualization with XML and
VRML”, in Proceedings of Computer Graphics
International 2000 (CGI’00), Geneva, June, 2000.

[9] J. R. Borck – “Future of Networked Apps” , InfoWorld
Magazine, July 2001, available at
http://www.infoworld.com/articles/tc/xml/01/07/16/01071
6tcsoap.xml (April, 19th 2002).

[10] C. S. Ang, D. C. Martin, M. D. Doyle – “ Integrated
Control of Distributed Volume Visualization Through the
World-Wide-Web” , in Proceedings of IEEE
Visualization’94, 1994, pp. 13-20.

[11] J. Ahrens, C. Law, W. Schroeder, K. Martin, M.
Papka – “A Parallel Approach for Efficiently Visualizing
Extremely Large, Time-Varying Datasets” , available at
http://public.kitware.com/VTK/pdf/pvtk.pdf, April, 20th
2002.

[12] J. Wood, K. Brodlie, H. Wright – “Visualization
Over The World Wide Web And Its Application To
Environmental Data” , in Proceedings IEEE
Visualization’96, October/November, San Francisco,
Califórnia, pp. 81-86, 1996.

[13] M. Aeschlimann, P. Dinda, J. Lopez, B. Lowekamp,
L. Kallivokas, D. O'Hallaron, "Preliminary Report on the
Design of a Framework for Distributed Visualization” , in
Proceedings of the International Conference on Parallel
and Distributed Processing Techniques and Applications
(Las Vegas, Nevada), invited paper, pages 1833-1839,
CSREA Press, June 1999.

[14] K. Brodlie, N. El-Khalili, Y. Li – “Using web-based
computer graphics to teach surgery” , in Computer &
Graphics, n. 24, 2000, pp 157-161.

[15] A. D. Alves, M. C. F. Oliveira, R. Minghim, L. G.
Nonato – “ Interactive Visualization over the Web” , in
Proceedings of SIBGRAPI’2000, IEEE Computer Society
Press, October/2000, pp. 259-268.

[16] J. J. Hare, J. A. Clarke, C. E. Schmitt – “The
Distributed Interactive Computing Environment” ,
Proceedings of 21st Army Science Conference, available
at www-lil.univ-
littoral.fr/~lefer/Web3Dgv/IEEEWorkshop98/Hare.abstra
ct.html (April, 20th 2002), 1998.

[17] M. Henning, S. Vinoski – Advanced CORBA
Programming with C++, Addison-Wesley Professional
Computing Series, 1999.

[18] Object Management Group – “The Common Object
Request Broker: Architecture and Specification” ,
available at
http://www.infosys.tuwien.ac.at/Research/Corba/OMG/co
ver.htm,(April , 20th 2002), 1995.

[19] Zunino, C.; Montrucchio, B.; Sanna, A.; Demartini,
C. – “A distributed visualization environment for
scientific visualization based on Jini technology” ', in IEEE
Proceedings of SCCG'2001, April 2001, pp. 95-101.

[20] Liere, R.; Harkes, J.; Leeuw, W. – “A Distributed
Blackboard architecture for Interactive Data
Visualization” , in Proceedings of IEEE Visualization’98,
Outubro/1998, North Carolina, USA, pp. 225-231.

[21] Engel, K.; Hastreiter, P.; Tomandl, B.; Eberhardt, K.;
Ertl, T. – “Combining Local and Remote Visualization
Techniques for Interactive Volume Rendering in Medical
Applications” , in Proceedings of IEEE Visualization’00,
2000, pp. 449-452.

[22] Frisch, N.; Ertl, T. – “Embedding Visualization
Software Into a Simulation Environment” , in Proceedings
of SCCG 2000, Bratislava, 2000.

