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Abstract. A new three-dimensional reconstruction technique is presented that uses an integer control parameter, 
denoted β, to produce a family of models from a given set of planar cross-sections. Parameter β supports 
multiple choices for solving the correspondence problem, i.e., the problem of deciding which regions from two 
consecutive cross-sections must be connected into a single component. Thus, unlike current reconstruction 
methods, the beta-connection algorithm enables the consideration of multiple alternatives when establishing 
region correspondence. In addition to this flexibility, which is useful in creating models with complex 
topologies, the algorithm produces PL-manifolds and respects the re-sampling condition, thus providing an 
interesting reconstruction solution for many practical visualization and numerical simulation applications.  
 

1. Introduction 
Many algorithms have been developed to reconstruct 
three-dimensional models from a set of parallel planar 
cross sections of an object. Such algorithms must handle 
three intrinsic reconstruction problems, namely, 
correspondence, branching, and tiling. The 
correspondence problem arises when it is necessary to 
decide which regions in two adjacent slices must be 
connected into a single component. Branching is related 
with handling the saddle points that may appear in the 
models. Tiling refers to the construction of a polygonal 
mesh connecting regions in adjacent sections. 

Reconstruction algorithms described in the literature, 
albeit adopting different strategies to solve the 
correspondence problem, share a common characteristic, 
which is the lack of flexibility in defining the 
correspondence amongst regions in consecutive slices. In 
deciding which regions must be connected, most 
techniques either assume a previously established 
correspondence, or adopt some proximity criterion. Thus, 
from the set of possible choices, only one is considered in 
creating the 3D model. However, flexibility in the choice 
of correspondence is important because the information 
given by the cross section is not sufficient to guarantee 
that a ‘correct’ connection has been made. This is 
illustrated in Figure 1, where the regions in the slices of 
Figure 1(a) could be obtained from any of the objects 
shown in Figures 1(b), 1(c) or 1(d). 

This work extends a previous technique for volume 
reconstruction from planar sections [12] to allow 
consideration of multiple choices when defining a 

correspondence amongst multiple regions. The motivation 
for a more flexible strategy to treat the correspondence 
problem came from applications in reconstruction of 
arterial structures and creating solid models of objects 
with complex topologies. In those applications, the 
heuristic adopted by our previous algorithm [12] failed to 
produce the desired models. 
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Figure 1 Models with identical planar cross 
sections.  

 
The algorithm presented in this paper is particularly 

adequate to the reconstruction of objects with high degree 
of branching and/or merging. Based on the 3D Delaunay 
Triangulation, it produces a family of models from a given 
set of cross sections. Model generation is governed by an 
integer parameter, denoted β, whose value controls the 
degree of proximity to be assumed when establishing 
correspondence amongst regions in neighboring slices. 
Increasing values of β result in stronger region connection. 
The resulting models are guaranteed to be 3D piecewise 
linear manifolds (PL-manifolds), a highly desirable 



  

property for numerical simulations, which is one of our 
target applications. The algorithm also satisfies the re-
sampling criterion, i.e., intersection of the resulting model 
with the original cutting planes produces the original set of 
planar cross-sections. 

This paper is organized as follows: Section 2 
provides a brief overview of related work in surface and 
volume 3D reconstruction from planar cross-sections. 
Section 3 reviews relevant definitions and properties of 
Delaunay triangulations and Voronoi diagrams. Section 4 
describes the Beta-connection approach. The subdivision 
and disconnection processes employed in model 
generation are presented in Section 5. Section 6 presents 
the algorithm and a complexity analysis. Section 7 shows 
some illustrative examples, and finally conclusions and 
further work are presented in Section 8. 

2. Related Work 
Many non-invasive techniques, such as MRI (Magnetic 
Ressonance Imaging), CT (Computer Tomography), and 
laser microscopy, produce cross sections of objects from 
which 3D models can be reconstructed that approximate 
the original objects. Reconstruction has applications 
ranging from education to diagnosis and simulation of 
medical procedures. Some of the strategies described in 
the literature build the 2D surface that bounds the object, 
while others produce volumetric representations, typically 
using voxels or tetrahedrons as primitives. Some of these 
strategies are briefly reviewed in this section, with 
emphasis in the approach they adopt to solve the 
correspondence problem. 

Implicit techniques create a smooth implicit function 
whose zero set coincides with the boundaries of the 
regions contained in the slices. Jones & Chen [2] use a 
signed distance field to create the implicit function, and 
then apply the Marching Cubes algorithm [3] to extract the 
surface bounding the regions. Correspondence amongst 
regions in different slices is automatically defined by the 
implicit function, making it difficult to choose specific 
connections.  

Voxel based approaches generate a representation of 
the original object directly from the image data without 
building a surface or volumetric mesh [4]. Although it 
avoids critical issues, such as segmentation of contours in 
the slices and management of the mesh, this approach does 
not allow control of the correspondence amongst contours, 
which is actually determined by the interpolation approach 
adopted to create the visualization. 

The so-called optimal approaches employ graph 
theory to build the 3D model. Shinagawa & Kunii [5] 

expand a discrete toroidal graph to obtain a continuous 
graph, and homotopy is used to reconstruct parametric 
surfaces and define the correspondences. Meyers et al. [6] 
assemble contours into cylinders and use a minimum 
spanning tree to establish the correspondence amongst 
them. In deformable models deformations are successively 
applied to an initial model to gradually approximate the 
original object [7]. Different connections may be obtained 
from distinct initial models, and finding suitable 
initializations is not a trivial task.  

Many algorithms employ heuristics to construct a 3D 
model from planar cross sections. Ekoule et al. [8] map 
boundaries of regions into their convex hull and use the 
shortest edge to connect convex hulls that are in adjacent 
slices. Bajaj et al. [9] define three criteria to be met by the 
reconstructed surface and build an algorithm based upon 
them. In regions where the conditions cannot be satisfied 
the surface is completed with a triangulation that takes into 
account the Voronoi skeletons. Correspondence amongst 
regions is implicitly defined by the reconstruction criteria 
and a volumetric model may also be created with a 
tetrahedralization process [10].  

Boissonnat [11] uses the projections of the 2D 
Voronoi diagrams of every pair of consecutive slices to 
build a graph that embeds information on the 3D Delaunay 
triangulation. From that graph a volumetric model is 
generated through tetrahedron elimination. 
Correspondence is given by the Delaunay triangulation 
and the tetrahedron elimination.  

Nonato et al. [12] use the 3D Delaunay triangulation 
to build a volumetric model that is a manifold. Although 
the algorithm accepts previously defined connections, 
correspondence amongst regions is automatically 
determined by a proximity criterion. This criterion verifies 
the occurrence of a special type of tetrahedron, called 
reverse tetrahedron, in the Delaunay triangulation. In this 
paper we extend our previous solution [12] with an 
algorithm that can create a family of possible 3D models 
from a given set of planar cross sections. Unlike existing 
algorithms, the technique considers multiples choices for 
the correspondence problem. It also produces PL-
manifolds and satisfies the re-sampling condition. 

3. Basic Concepts 
In this section we briefly introduce some definitions and 
properties of Delaunay triangulations and Voronoi 
diagrams. Detailed descriptions on both, as well as on 
algorithms to build them, can be found elsewhere [14, 15]. 
Voronoi skeletons, tetrahedron classification and strong 
contour overlapping are also introduced. 



  

3.1 Voronoi Diagram and Delaunay Triangulation 
Let A={x1,...,xn} be a set of points in general position in 
Rm, i.e., there is no affine subspace of Rm containing A and 
there is no sphere Sm-1 through a subset of A with m + k, 
k>1 points. In this text sets of points are always assumed 
to be in general position. The Voronoi diagram for A is a 
decomposition of Rm into m-dimensional convex cells 
V1,...,Vn with the following properties: 

1. Each Vi contains a single point xi of A. 

2. Given x∈ Rm, x∈ Vi if and only if d(x,xi) ≤ d(x,xj), for 
every i ≠ j, where d is the Euclidean distance. 

It can be shown that the intersection of k Voronoi 
cells, 2 ≤ k ≤ m+1, is either empty or is an (m–k+1)-
dimensional cell contained in the diagram. A triangulation 
can be obtained from the Voronoi diagram by associating 
each of its p-dimensional cells with an (m-p)-simplex. 
Considering, for example, the 2D case, each vertex in the 
diagram (given by the intersection of three cells) is 
associated with a triangle (2-simplex); each edge is 
associated with an edge of the triangulation (1-simplex); 
and each cell Vi is associated with a vertex xi of the 
triangulation (0-simplex). The triangulation so obtained is 
called Delaunay triangulation, and it maintains with the 
Voronoi diagram a duality relationship. 

From the duality relationship and the general position 
of the points it follows that each 0-dimensional cell of the 
diagram is the center of a sphere circumscribing an m-
simplex and that this sphere does not contain in its interior 
any other points of A. If the points in A are positioned on 
two consecutive parallel planar sections P1 and P2, the 
intersection of their 3D Delaunay triangulation with Pi (i = 
1,2) is the 2D Delaunay triangulation of the points in Pi. 
This property was proved by Boissonnat [11] and will be 
useful in the following sections.  

Another important fact demonstrated by Boissonnat 
[11] is that, if the points in P1 and P2 are polygons 
vertices, some edges of such polygons may not belong to 
the Delaunay triangulation. Boissonnat has shown that a 
polygon edge that is not in the Delaunay triangulation may 
be subdivided into new edges that will be contained in the 
triangulation. Based on the above results, from now on, 
the boundaries of the regions contained in the set of 
parallel planar cross sections will be defined by the non-
intersecting polygons whose edges belong to the Delaunay 
triangulation of its vertices. The polygons satisfying this 
condition are called contours.  

3.2 Voronoi Skeletons 
Let C1 and C2 be two sets of contours bounding regions 
contained in adjacent planar sections P1 and P2 and DT the 
3D Delaunay Triangulation of the vertices in C1 ∪ C2. 
Suppose that contours in C1 and C2 are oriented in such a 
way that the interiors of the regions are always on their 
left-hand side. Based on contour orientation, an edge of 
DT contained in P1 or P2 can be classified as either 
internal or external to a region. Edges on the contours are 
labeled as contour edges. Note that only the edges 
contained in Pi (i = 1,2) are classified, those DT edges 
lying between P1 and P2 are not classified. 

DT has tetrahedrons of two types: those with a face in 
P1 (P2) and a vertex in P2 (P1), named ‘type 1’ 
tetrahedrons, and those with a edge in P1 an another edge 
in P2, named ‘type 2’. Based on the classification of its 
edges, a tetrahedron in DT may be classified as internal, 
external or redundant. A tetrahedron with at least one edge 
internal to a region r is said to be an internal tetrahedron 
of r. A tetrahedron with at least one external edge and no 
internal ones is said to be an external tetrahedron, and a 
‘type 2’ tetrahedron with two contour edges is called a 
redundant tetrahedron. A special case is the reverse 
tetrahedron [12], a ‘type 2’ tetrahedron whose edges in P1 
and P2 are either both internal ones, or are one internal and 
the other external, as shown in Figure 2. Note that a 
reverse tetrahedron can be internal to two regions 
simultaneously. Reverse tetrahedrons bear a straight 
relation with the relative positioning of regions in adjacent 
slices, as discussed by Nonato et al. [12]. 

 

 
(a) 

 

(b) 
Figure 2 Reverse tetrahedrons. 

 
Let VDi be the 2D Voronoi diagram of the vertices of 

Ci in Pi (i = 1,2). The Voronoi skeleton of a region r ⊂ Pi  
is defined as the subset of the VDi edges that are dual to 
the DT internal edges with ends in the contours of Ci that 
bound r. Figure 3 shows a set of regions and their 
correspondent Voronoi skeletons. 



  

Figure 3 Voronoi skeletons.  

 
Two regions r1 ⊂ P1 and r2 ⊂ P2 are defined as strong 

overlapping regions if the orthogonal projection of the 
Voronoi skeleton of r1 onto P2 intersects the Voronoi 
skeleton of r2. The relevance of strong overlapping regions 
will become apparent in Section 4, where the beta-
connection family is introduced.  

4.  Beta-Connection 
The beta-connection approach tackles the reconstruction 
problem by handling pairs of consecutive slices. Thus, 
from now on we assume an input set of points composed 
by vertices of contours lying on two parallel planar 
sections. This Section starts with a description of a graph 
structure from which beta-connections are derived. 

4.1 The DT Associated Graph 
Let C1 and C2 be two sets of contours representing the 
boundaries of regions R1 and R2 contained in adjacent 
planar sections P1 and P2, respectively, and DT the 3D 
Delaunay triangulation of vertices in C1 ∪ C2. From DT, a 
graph G can be constructed that has two types of nodes. 
Each region r∈ R1 ∪ R2 and all its internal tetrahedrons 
define a so-called called region node in G, and each 
external or redundant tetrahedron of DT define an external 
node in G. Edges linking pairs of nodes in G are obtained 
as follows: 

1. If two regions r1 and r2 have internal tetrahedrons 
with a common face, or if there is a reverse 
tetrahedron with internal edges in r1 and r2, then the 
region nodes representing r1 and r2 are connected by 
an edge. 

2. If an external or redundant tetrahedron t share a face 
with an internal tetrahedron of a region r, then the 
region node r and the external node t are connected by 
an edge. 

3. Two external nodes are connected if and only if the 
tetrahedrons they represent share a face. 

Figure 4 illustrates a set of regions and the graph G 
generated from their DT. It follows from the above 
construction process that graph G is connected. Moreover, 
each of its external nodes has a minimum degree equal to 
1 and a maximum degree equal to 4. 
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(c) 

Figure 4 a) Original contours; b) 3D Delaunay 
Triangulation; c) Graph. 

 
A path of length n connecting two region nodes a and 

b in G is a sequence of nodes {τ1,...,τn+1}, such that τ1 = a, 
τn+1 = b, and (τi,τi+1), i = 1,...,n, is an edge of G. The 
distance between two region nodes a and b, denoted 
dG(a,b), is the length of the shortest path between a and b. 

4.2 Beta-Components 
Let β be a natural number. Two region nodes a and b are 
said β-connected, denoted a ≈β b, if there is a sequence of 
region nodes {σ1,...,σk}, where σi ∈ G (i = 1,...,k), σ1 = a 
and σk = b, such that dG(σi,σi+1) ≤ β. It can be shown that 
relation ≈β is an equivalence relation. 

The equivalence relation property guarantees that 
each value of β defines equivalence classes constituted by 
those region nodes of G positioned at a distance smaller 
than or equal to β from one another. As each region node 
represents a region contained in a plane Pi (i= 1,2), β also 
defines equivalence classes for the original regions, thus 
allowing correspondence to be specified through 
equivalence classes. In other words, each equivalence 
class defines which regions are to be connected. Different 
values of β produce different equivalence classes, 



  

enabling multiple choices of correspondence amongst the 
regions. 

An important property of β-connection, which is 
proved in [13], describes the behavior of the connection 
process as β increases. This property states that strong 
overlapping regions are the first to be connected, i.e., for 
any β ≥ 1 they will be placed into a single component and 
thus connected. This is reasonable because these are 
regions with a high degree of overlapping. Connection of 
regions with strong overlapping is the approach adopted 
by most 3D reconstruction algorithms, as it is natural to 
place those regions into a single component. However, for 
those algorithms this is the only possible criterion, 
whereas in beta-connection this is the starting point when 
considering possible connections.  

Note that for β = 0, no correspondence amongst 
regions is established and that the number of regions 
grouped into a single equivalence class increases as β 
increases. All regions will be contained in a single class 
for a sufficiently large β. 

The above reasoning shows that strong overlapping 
regions share reverse tetrahedrons and are always the first 
ones to be grouped when β increases from zero. Another 
important property that follows from the propositions 
presented by Nonato et al. [12] is that there is no reverse 
tetrahedron internal to two regions, unless these are strong 
overlapping regions. This is useful in the disconnection of 
components presented in Section 5. 

5. Component Disconnection and the Subdivision 
Process 

As described above, each equivalence class originates a 
connected component in the reconstructed model. As the 
Delaunay triangulation is a connected simplicial complex, 
the tetrahedrons linking the components must be removed 
in order to disconnect them. This tetrahedron elimination 
process is described in the following. 

5.1 Connected Components Generation 
The connected components are computed from the 3D 
Delaunay triangulation and a given value for the β 
parameter. At this stage, all connected components have 
already been defined, but are still part of the whole 
triangulation. To disconnect components according to the 
equivalence classes specified by β it is necessary to 
remove from the Delaunay triangulation all external and 
redundant tetrahedrons whose vertices are not in the same 
component.  

Although tetrahedron elimination is necessary, it may 
not be sufficient to disconnect the components. In some 

situations, as illustrated in Figure 5, components may 
remain connected through vertices or contour edges after 
eliminating the tetrahedrons. In this case, vertices (and 
edges) must be displaced (translated) to completely 
disconnect components, as shown in Figure 5(c). For 
additional information on how this operation is performed 
see Nonato et al. [12]. 

 

 

 

 

 

 

 

Figure 5 a) 3D Delaunay Triangulation; b) 
Elimination of external tetrahedron; c) 
Translation of vertices. 

 
A special case deserving attention is β = 0, when 

each region generates an independent connected 
component. In this case the presence of reverse 
tetrahedrons in strong overlapping regions does not allow 
disconnection to be properly executed. The problem is that 
if vertices are translated to disconnect strong overlapping 
regions, reverse tetrahedrons internal to both regions will 
remain in one of them and generate “wedges” in the 
internal edges of the other region (Figures 6(a) and 6(b)).  

A wedge characterizes a singularity, i.e., the 
boundary of the union of the tetrahedrons around the 
wedge is not homeomorphic either to a sphere or to a half-
sphere. Singularities must be avoided in order to ensure 
that the reconstructed object is a PL-manifold. Thus, to 
disconnect strong overlapping regions it is necessary to 
duplicate the reverse tetrahedrons and then translate 
vertices and edges, as shown in Figure 6(c). 

 

(a) (b)

(c)



  

(a) (b) 

(c) 
Figure 6 Duplicating the reverse tetrahedron. 

5.2 Tetrahedron Subdivision  
To ensure that the connected components obtained from 
the disconnection process satisfy the re-sampling 
condition, external tetrahedrons in these components must 
also be eliminated. However, as in the disconnection case, 
this may introduce singularities. This is solved with an 
appropriate tetrahedron subdivision process (TSP, for 
short), originally introduced by Nonato et al. [12]. It 
consists of three steps. First, external tetrahedrons whose 
removal does not introduce singularities are eliminated. 
Then, all the external tetrahedrons whose elimination 
introduces singularities are subdivided. Finally, the new 
vertices introduced in the subdivision are translated to an 
intermediate position between the consecutive slices to 
ensure that each component meets the re-sampling 
criterion. 

Tetrahedron subdivision follows two criteria. For 
type 1 tetrahedrons, a new vertex is inserted in each 
external edge. The number of new tetrahedrons introduced 
depends on the number of new vertices created: two 
tetrahedrons if one new vertex was created, and three or 
four new tetrahedrons if two or three vertices were 
created, respectively. For type 2 tetrahedrons, two or four 
new tetrahedrons may be introduced, depending on 
whether one or two new vertices are inserted into the 
external edges. This subdivision process guarantees the 
manifold condition. The approach is fully described and 
illustrated elsewhere [12]. Figure 9 shows the TSP results 

for a set of four regions. Note that the branching problem 
was solved in a very satisfactory manner. 

 

 
Figure 9 Result of the tetrahedron subdivision 
process. 
  

6. The Algorithm 
Let C be a set contours bounding the regions contained in 
two adjacent planar sections and β a natural number. The 
Beta-connection reconstruction algorithm can be stated as 
follows: 

(1) Delaunay triangulation: Compute the
3D DT of vertices in C. Classify
tetrahedrons as internal, external,
reverse or redundant.

(2) Beta-components: Create 3D DT
associated graph and compute Beta-
components from the equivalence
classes defined by β.

(3) Connected components: Remove
external and redundant tetrahedrons
connecting the Beta-components. If
necessary, translate vertices and
duplicate reverse tetrahedrons.

(4) Reconstruction: For each Beta-
connection:

a) Remove external and redundant
tetrahedrons whose elimination
does not introduce singularities.

b) Subdivide the remaining external
tetrahedrons.

c) Translate the new vertices to an
appropriated position between
slices.

This algorithm performs geometrical computations 
only when deriving the 3D Delaunay triangulation. All the 



  

remaining operations and tests are topological, ensuring a 
more robust and efficient implementation. 

Since the classification, elimination, and subdivision 
steps can be done in linear time on the number of 
tetrahedrons, the computational cost of the algorithm is 
governed by the construction of the Delaunay triangulation 
and by the computation of the Beta-components. The 3D 
Delaunay triangulation may be built in O(n2) with an 
incremental algorithm [14], where n is the number of 
vertices. Computation of Beta-components reduces to 
computing, for each region node σi ∈ G, the distances 
from σi to all the region nodes σj ∈ G, i ≠ j. This 
computation can be done with a breadth-first search 
algorithm [16] in O(NrE), where Nr and E are the number 
of region nodes and the number of edges in G, 
respectively. 

7. Results and Examples 
This section presents some models obtained with the Beta-
connection algorithm. For visualization purposes the 
Visualization Toolkit (VTK) [17] was used in connection 
with a C++ implementation of the algorithm described in 
the previous section. These illustrative visualizations were 
produced to emphasize the quality of the models and the 
importance of flexibility in choosing correspondence 
amongst regions.  

Figure 10(a) presents a set of regions in two adjacent 
planar cross sections, and Figures 10(b) to 10(d) show the 
models generated with β values equal to 0, 1 and 3, 
respectively. The model obtained with β = 2 would be the 
same depicted in Figure 10(c), as in the underlying graph 
G the contours positioned at a distance given by β = 2 are 
the same ones positioned at a distance given by β = 1.  

 

    
(a) 

 
(b) 

 

 
(c) 

 
(d) 

Figure 10 a) Original contours; b), c) and d) 
models generated with β equal to 1, 0 and 3 
respectively. 

The example in Figure 11 illustrates the importance 
of flexibility in establishing connections amongst 
components. Figure 11(a) presents a set of regions 
contained in a sequence of slices. Because the 
reconstruction process analyses two adjacent planar 
sections at a time, it is possible vary the values of β across 
different pairs of slices, a capability that makes Beta-
connection a powerful tool in solid modeling. Figures 
11(b) to 11(d) show three different models obtained by 
assigning different values of β to each pair of slices. 
Observe that the topology of the resulting models is 
completely different in each case.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 11 Models generated with different 
values of β when connecting components in 
different pairs of consecutive slices. 



  

8. Conclusions 
We present a novel technique for handling the connection 
problem in reconstructing 3D structures from planar cross 
sections. This technique offers flexibility in choosing how 
components are to be connected, allowing multiple 
choices to be considered, and solves the branching and 
tiling problems in a very satisfactory manner. The 
algorithm manages to generate a one-parameter family of 
models from a single set of samples based on an approach 
that computes the distance amongst regions through a 
Delaunay triangulation. Resulting volumetric models are 
robust PL-manifolds useful in solid modeling, numerical 
simulation and visualization applications. 

We are particularly interested in applying this 
approach in the visualization of the arterial system of the 
liver and in representing volumetric meshes in numerical 
simulations. The fact that the resulting mesh is free of 
singularities simplifies computations in the simulation of 
physical phenomena. For some numerical simulations 
performed, such as heat transfer, little re-meshing was 
necessary to comply with requirements of the numerical 
methods. An overall re-meshing technique specific for 
meshes produced with this algorithm is under 
development.
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