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Abstract. Quincunx downsampling splits the spedrum of an image in two diamond-shaped subbands. This
all ows the information to which the human eye is most sensitive to be preserved, and also requiring lesshitsin
a lossy compresson. In this paper, we develop an algorithm that performs siccessve quincunx subband
decompositions, thus alowing multi-level decompositions and efficient coding. Theory of lattices is briefly
reviewed, and simulations using a simple subband coder were caried aut. Results obtained are mmpared to the
redangular separable subband decomposition, showing that, without exploring redundancies due to quincunx

smmetries, bath strategies deliver smmillar results.

1 Introduction

In the last decade, subband coding, a coding technique
started by Crochiére[l] and sometimes refered to as
multiresolution anaysis, has become grealy popuar,
given its smplicity, versatility and the broad spedrum of
applications it provides, such as signal compresson,
feature detedion and extraction, frequency detedion and
many more. Relation between wavelets and subband
coding was revealed by Mallat, who aso developed the
successve decompositions agorithm, which increased
efficiency of thistechnique.

Following it, Vetterli[2] expanded the concept to
multidimensional signals, which made posshle to use this
technique with images. Concepts developed by Vetterli
were etended by Woods and O'Neil[3]. These works
only dealed with separable sampling o images. Viscito
and Allebach[4] extended the aaysis to arbitrary
sampling lattices. Currently, non-separable sampling
| attices have gained much attention [5, 6].

The use of subband coding in image @mmpresson
was also investigated by a great number of authors, and
also agreat number of posshiliti es appeaed. Some of the
most efficient methods of image cmpresson nowadays
use subband coding, including the new standard JPEG
2000 Werefer thereader to [7] for an extensive survey on
the subject.

In this paper, we analyse quincunx subband coding
of images. Quincunx subbands are non-separable
diamond-shaped frequency bands. Since spatia
frequencies to which human eye is most sendtive ae
located in the frequecy axes [8, 9], quincux subbands
preserve information that is most relevant to the human
eye. Also, mathematically, most of the analysisis a dired
extension of the one-dimensional case.

One problem with quincunx downsampling is the
nonexistence of an agorithm to perform successve
decompositions. Here, we try to solve this problem by

developing a technique that will alow any image to be
decomposed at any desired level.

This paper is organized as follows: in sedion 2 we
review the necessary concepts of multidimensional
sampling with arbitrary lattices, and apply these @mncepts
to the quincunx case; in sedion 3, we derive the
conditions to design of perfed remnstruction filter banks
for quincunx subbands; in sedion 4, we show how to
perform successve decomposition using quincunx
downsampling of images;, in sedion 5 we apply the
concepts to image @mpresson; and in sedion 6 we
present our conclusons and remarks.

2 Quincunx Sampling

Let x(t), where t = [ t; t, ]", be a two-dimensional
function in the space domain, and X (w), where w = w,
w 17, be its representation in the frequency plane. The
discretization operation of this function conssts of
obtaining samples of its values at fixed intervals of space
Given two linealy independent vedors d; and d, which
define two diredions aong which samples are taken, we
define D = [ d; d, ] as the sampling matrix, which
generates the sampling lattice of the discrete version of
x:(t). We can expressthis operation with the eguation:

x[n]=x,(Dn) 1

wheren = [ n, np ]" is a vedor of integer numbers. The
most common sampling latticeis the separable one, which
is described by the vedorsd; =[10]andd,=[ 0 1].
The sampling sublattice is determined by D as dl the
vectors Dn. The wmset of a lattice is the set of points
obtained by shifting the entire lattice by an integer vedor
k. For a given lattice there will be dways N = | det D |
cosats. In the @se of subband coding, N will aso
determine the number of subbandsin each decompositi on.

It is posshle to relate frequency representation of the
discrete function x[n] with the representation in frequency



of x(t) [8]. By combining bath representations and
Equetion 1, wefind

X(w):%ZXC(D_Tw—ZnD_TI) 2

where D" denotes the inverse transpose of D.

Thisresult is a dired extension of what is found in
[1Q]. It isimportant to observe that Equation 2 represents
the replication of the spedrum of x. aong the points
represented by 2rmDl, which shows that aliasing may
occur if the signal is not band-limited. It is posshle to
show that aiasing will ocaur if the signal has components
outside the region defined by
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The downsampling gperation of a discrete signa on
an arbitrary latticeis represented by

y[n] = x[Dn] 4

Following the same reasoning used in Equations 1-3, we
can relate the spedrum of y[n] with that of x[n]. We will
find that

Y(m):%Nz_lx(D_Tw+2nD_Tki) 5
1=0

where k; is the integer vedor that represents the i-th coset
of the samplinglattice

The upsampling operation is defined as the inverse
operation

yln]= xl_D'TnJ 6

with the @nstraint that this operation is only valid where
D 'n mapsto valid points of x[n], being defined as 0 when
thisdoesn’t occur. Its frequency representation is given by

Y(©)=x(DT0) 7

For a further discusson of effeds of arbitrary
sampling an images, we refer thereader to [4] and [8].

We are interested in quincunx sampling, which is
described by vectorsg; =[11]and g =[1-1]. We
define the sampling matrix Q = [ g1 0. ]", below, as the
guincunx sampling matrix

o 10
Q_H 1 8

Quincunx sampling consists in sampling with
diagonal regular periodicity, as shown in Figure 1. The
vectors q; and q, defines the diredions diown in the
figure as t;’ and ty', respedively. It is easy to see that
diagonal periodicity of this sampling strategy is equivalent
to redanguar samplingin aset of axisrotated 45°.
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Figure 1: Quincunx sampling lattice Shaded
points represent the seand coset of the lattice

Since |det Q| = 2, the @sets of the quincunx sampling
lattice can be represented by two vedors
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That also meansthat each decompositi on of the signal will
result in two subbands. We substitute the definitions in
Equations 8 and 9 in Equation 5 to oltain the frequency
representation of the quincunx downsampled signal from
aredanguar one, and oltain

o)=Ll ors] 10

where t=[ tmt]" = 2nQ 'k, The second term inside the
brackets in Equetion 10 is the aliased component in the
guincunx downsampling, which needs to be made null in
the remngruction process From that, and also from
Equation 3, it’s easy to see that aliasing will not occur if
the spedrum of the signal is band-limited according to

x| +|oog| <72 1

Equation 11 represents a diamond shaped spedrum, as
can be seen in Figure 2.

3 Filter Desgn

Tipicaly, a subband decomposition system consists of a
filter bank followed by downsampling by the appropriate
sampling periods, generating one subband for each
andysis filter H;(w) in the filter bank. Each signal is then
processed —eg, compressed, used for feature detedion or
extraction, transmitted, etc. — and after processing, if
negled, the origina signal is rewmnstructed from its
subbands. The recnstruction processis a mbination of
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Figure 2: Frequency band of a quincunx
downsampled image.

the upsampled and filtered version of al the subbands.

The filters Gi(w) in the remnstruction portion are
caled synthesis filters. If the recmnstructed signal at the
end of the processis a perfed copy of the original, we say
that perfed recmnstruction is provided.

Figure 3 shows the subband decomposition of a
signal for a quincunx sampling lattice The symbd Q!
represents quincunx downsampling, and Qt represents
quincunx upsampling. There will be only two subbands,
so anly two filters are needed in the filter bank.
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Figure 3: Quincunx subband demmposition and
reconstruction of asignal

Each subband Y;(w) resulting from the analysis of the
signal will be given by
ok 7o)

O

+H, (Q'Tm + n)X (Q'Tm + n)]

Following diredly from Figure 3, the reconstructed
signal will be

>2("J)ZGO(‘D)YO( T‘”)"'Gl(‘”)Yl( T‘”) 13

Combining Equations 12 and 13 we get

12

(o)=L o)) )5 o)
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14

From Equation 14 is possble to derive the
conditions of perfed rewmnstruction for a filter bank. The
first parcd of theright hand of the eguation represents the
desired pat of the signal, while the secnd parced
representsthe aliased terms. If we satisfy

Ho(‘”)Go (‘D)+ Hl(‘”)Gl(‘D): e oo 15
HO((D +71:)GO(0))+ Hl(c) +n)Gl(w):O 16

then the aliasing will be cancdled and the signa will be
perfed rewmnstructed. The term in the right hand of
Equation 15 means that the signal may suffer a delay. We
will beinterested in situations where the delay equals zero
in bath axes, to simplify the analysis.

The thoiceof filters that satisfy Equations 15 and 16
are numerous and dfficult. There ae numerous
tedhniques to filter design, including, but not limited to,
optimization of a cost function [4, 11, 12], mathematical
definitions and smmetries [6, 13], and transformations on
one-dimension filters to generate a two dimensiona one
[14, 15]. For any technique, the mnditions gtablished in
Equations 15 and 16 are enough to oltain a perfed
reconstruction filter bank. Also, note that solving those
equations will aso satisfy the anti-aliasing condition
determined by Equation 11.

A clasdcal solution to this st of equations is given
by the quadrature mirror filters (QMF) [16, 17]. By
making

Hl(w): HO((D —n)
Go(w): HO((D) 17

Gy(0)=-H; (o)

it can be proved that aliasng will be cancdled. Thus, it is
needed to design only the lowpassanalysis filter, and the
others can be derived from it. This choice of filters leads
to the foll owing cost function:

= [l-|Ho(@)]f do + 1[|Ho(m)| do  1g

passband stopban

where pasdand, for a low-pass quincunx filter, is given
by Equation 11, and stopband is its complement in the
frequency plane (ie, |w|+|ax[>m). Equation 18 is a dired
extension of [1].

Cost function optimization can benefit from
simmetry caused by the quincunx sampling. It is possble
to divide the filter mask in rings [6] where the values of



the efficients are the same. This Smmetry can aso be
applied while implementing the quincunx subband
decompositi on, raising the computational efficiency of the
algorithm. Figure 4 shows this smmetry for odd length
filters, but it isaso posgbleto apply similar sSmmetriesto
even-length filter masks.
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Figure 4: Rings of simmetry of a quincunx filter
coefficients.

The optimization of the st function stated in
Equetion 18 is difficult if the first estimate of the
coefficientsis not appropriate. We used asinitia values
the filters obtained by frequency sampling, transforming
diredly from a one-dimensional QMF H(a). By choosing
samples at:

Ho(®) = H (1| +[a, ) 19

and taking the inverse fourier transform, we found a good
set of initial values for the filter coefficients, and
procealed with the otimization. In Table 1, we summarize
coefficients obtained using a 5 coefficient QMF as a
gtarting point. To satisfy the no-delay requirement in
Equation 15, we forced zero-phase of the filter.
Coefficients are ordered as in Figure 3. Also, Figure 5
shows the frequency response of filter Hy(w) obtained.

4 Successive Quincunx Decomposition

One of the strongest features of subband coding is the
posshility of implement successve decompositions, in
order to reduce the energy of each subband. In signal
compresson, this is a desirable characterigtic, since low
energy signas require less bhits to be transmitted.
Successve decomposition is achieved by continualy
applying subband decomposition on those subbands which
gtill have much energy on them — uwsualy the low
frequency band. For one-dimensional signals, and aso in
images being coded with a separable modd, it is easy to
seethat aplying the same set of filterswill result in the

Coefficient
" Value
Position

1 0.6470
2 0.1360
3 -0.0248
4 -0.0134
5 -0.0089
6 0.0043
7 0.0112
8 0.0000
9 -0.0007
10 0.0000
11 -0.0025
12 -0.0020
13 0.0008
14 -0.0001
15 0.0001

Table 1: Filter coefficients

Figure 5: Lowpassanalysisfilter.

desired decomposition. We will show that this procedure
can aso be applied to quincunx decmpositi ons.

Firg, we note that two successve quincunx
decompositions result in a separable downsampling by a
factor of two. This can easly be seen, as

oo

=R 1
20 9

Q%= %
Thus, after two quincunx decmmpositions, the resulting
band will be redangular, and the filter designed in the
previous edion can be applied again.

The band resulting from the first application of filter
Ho(w) and quincunx dedmation will have the shape of a
45 rotated square, which can easly be seen from
Equation 3. If we apply a rotated version of filter Ho(w),



Ho(Q'w) and proceal with quincunx dedmation, the
resulting band will have the shape

{Q_TQ_TOJZOJD[—IT,IT]X[—IT,IT]} 20

Since Q7 QT = R, this $ows that as the low
frequency andysis filter of the sewmnd quincunx
decomposition, we @n use a 45° rotated version of
original filter Ho(w). It is interesting to note that Ho(Q "w)
is the same filter as before, in resped with the rotated
frequency set of axis & = Q'w. Thus, the successve
application of Hg(w) and quincunx downsampling will
result in successve quincunx subband decomposition.
Figure 6 shows the proccess

L

= T
4]
=TT
Figure 6: Successve quincunx  subband

decomposition.

Since ach quincunx downsampled subband will
have half the number of samples of the previous one, a
data structure is nealed to represent these. Each line of a
subband will also have haf the number of samples of a
line of the original image. We choase to colapse two lines
into one, which allows us to hkuild the image on Figure 7,
which is a quincunx decomposition of level 2. This data
structure, however, is useful to help visualize the ading
process and it is not necessary that it should be used.
Since a quincunx subband has diagonal regularity, a
sequence of matrices could be used.

5 Compression of Quincunx Subbands

We show now the use of quincunx subbands in the
processof coding and compresson of images. There aea
lot of techniques to efficiently compressimage subbands.
We refer the reader to [7] for a complete survey on
modern tedhniques of scalar and vedor quantization
applied to subband coding o images.

Figure 7. Four-level subband

quincunx
decomposition of image baboon.

Since our main interest is to compare performances of a
guincunx subband coding with separable, we doose a
smple technique that will alow us to oltain data éout
the process Coefficients in each subband are quantized
and then entropy coded. Depending on the level of the
guantization, compresgon will achieve a greater
efficiency, but with the dfed of lowering sgnal-to-noise
ratio.

Self-organizing maps (SOM) [18] were used in order
to find a more appropriated set of quantization levels.
Thus, quantization of the oefficients was not uniform.
The process of converging a SOM applied to scalar
guantization is smple. Let w be the set of al quantization
levels. A spedfic subband coefficient X(n) will then be
closer to one of this values w, which is cdled the winner.
The winner isthen updated acoording to

Wy = W +5(X(n)—wk) 21

where J is the leaning rate. By repeating this processto
every coefficient in the subband, the result will be amore
appropriate set w of quantization levels. Each subband can
be used many times to converge the SOM to hetter the
approximation. We repeated the processthree times with
each subband.

Entropy coding o the quantized levels was done
using arithmetic coding.

Figure 8 shows the remnstructed images of the
baboon image, coded respedively with 1, 0.5 and 0.25 bit
per pixel. Signa-to-noise ratio to these images is given in
thefigure.

Tests were arried with a gred variety of images.
Figure 9 shows a plot of variation of average signal-to-
noise ratio according to hits per pixel obtained in image
coding, for redangular and quincunx downsampling, and
aso for the doandard cosine transform technique
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Figure 8: @) Original baboon; b) Baboon coded at 1 bpp. SNR = 31.10 dB; ¢) Babom coded at 0.5 bpp. SNR =

22,61 dB; d) Baboon coded at 0.25 bpp. SNR = 17.43 dB
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Figure 9: Variation of bit rate and sgna-to-noise
ratio for JPEG, sub-band and quincunx coding.

implemented by JPEG. Figure 9 shows that quincunx
performance is pretty close to redangular one, and bath
usually perform better than JPEG.

6 Conclusion

In this paper, we developed an agorithm to perform
successve quincunx downsampling o images, and
analyzed the performance of a subband image cder based
on that procedure. In our preliminary tests, we have found
that, in the context of image ding, quincunx
downsampling performs at least as well as standard
redangular  downsampling. However, the @ding
procedure does not take into acoount redundancies that
may appea in the subbands due to quincunx simmetries.
Research in thistopic is being conducted, as well as other



related topics, such as computational complexity and
subjedive performance

Thisisawork gill in development, and thus not all
the data ae available. The available results, however,
show that quincunx subband coding performs very closdy
to the common redangular subband coding, sometimes a
little better, sometimes a little worse. These results,
however, refer to oljedive quality of the recmonstructed
images, ie, noise energy and signal to noise ratio. That
sugeests us that size of file and noise obtained by this
technique will be very similar to separable sampling. We
exped that further research will show that will actualy
deliver better results.
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