
Compression of Quincunx Subbands
JOSÉ ALEXANDRE NALON, JOÃO BAPTISTA T. YABU-UTI

Unicamp – Universidade Estadual de Campinas
DECOM – Departamento de Comunicações

Av. Albert Einstein, 400 – CEP 13081-970 – Campinas SP
{nalon, yabuuti}@decom.fee.unicamp.br

Abstract. Quincunx downsampling splits the spectrum of an image in two diamond-shaped subbands. This
allows the information to which the human eye is most sensiti ve to be preserved, and also requiring less bits in
a lossy compression. In this paper, we develop an algorithm that performs successive quincunx subband
decompositions, thus allowing multi-level decompositions and eff icient coding. Theory of lattices is briefly
reviewed, and simulations using a simple subband coder were carried out. Results obtained are compared to the
rectangular separable subband decomposition, showing that, without exploring redundancies due to quincunx
simmetries, both strategies deliver simmillar results.

1 Introduction

In the last decade, subband coding, a coding technique
started by Crochiére[1] and sometimes refered to as
multiresolution analysis, has become greatly popular,
given its simplicity, versatility and the broad spectrum of
applications it provides, such as signal compression,
feature detection and extraction, frequency detection and
many more. Relation between wavelets and subband
coding was revealed by Mallat, who also developed the
successive decompositions algorithm, which increased
efficiency of this technique.

Following it, Vetterli [2] expanded the concept to
multidimensional signals, which made possible to use this
technique with images. Concepts developed by Vetterli
were extended by Woods and O’Neil [3]. These works
only dealed with separable sampling of images. Viscito
and Allebach[4] extended the analysis to arbitrary
sampling lattices. Currently, non-separable sampling
lattices have gained much attention [5, 6].

The use of subband coding in image compression
was also investigated by a great number of authors, and
also a great number of possibiliti es appeared. Some of the
most efficient methods of image compression nowadays
use subband coding, including the new standard JPEG
2000. We refer the reader to [7] for an extensive survey on
the subject.

In this paper, we analyse quincunx subband coding
of images. Quincunx subbands are non-separable
diamond-shaped frequency bands. Since spatial
frequencies to which human eye is most sensiti ve are
located in the frequecy axes [8, 9], quincux subbands
preserve information that is most relevant to the human
eye. Also, mathematically, most of the analysis is a direct
extension of the one-dimensional case.

One problem with quincunx downsampling is the
nonexistence of an algorithm to perform successive
decompositions. Here, we try to solve this problem by

developing a technique that will allow any image to be
decomposed at any desired level.

This paper is organized as follows: in section 2 we
review the necessary concepts of multidimensional
sampling with arbitrary lattices, and apply these concepts
to the quincunx case; in section 3, we derive the
conditions to design of perfect reconstruction filter banks
for quincunx subbands; in section 4, we show how to
perform successive decomposition using quincunx
downsampling of images; in section 5 we apply the
concepts to image compression; and in section 6 we
present our conclusions and remarks.

2   Quincunx Sampling

Let xc(t), where t = [ t1 t2 ]T, be a two-dimensional
function in the space domain, and Xc(ωω), where ωω = [ ω1

ω2 ]T, be its representation in the frequency plane. The
discretization operation of this function consists of
obtaining samples of its values at fixed intervals of space.
Given two linearly independent vectors d1 and d2 which
define two directions along which samples are taken, we
define D = [ d1 d2 ]T as the sampling matrix, which
generates the sampling lattice of the discrete version of
xc(t). We can express this operation with the equation:

[ ] ( )Dnn cxx = 1

where n = [ n1 n2 ]
T is a vector of integer numbers. The

most common sampling lattice is the separable one, which
is described by the vectors d1 = [ 1 0 ] and d2 = [ 0 1 ].
The sampling sublattice is determined by D as all the
vectors Dn. The coset of a lattice is the set of points
obtained by shifting the entire lattice by an integer vector
k. For a given lattice, there will be always N = | det D |
cosets. In the case of subband coding, N wil l also
determine the number of subbands in each decomposition.

It is possible to relate frequency representation of the
discrete function x[n] with the representation in frequency



of xc(t) [8]. By combining both representations and
Equation 1, we find
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where D-T denotes the inverse transpose of D.
This result is a direct extension of what is found in

[10]. It is important to observe that Equation 2 represents
the repli cation of the spectrum of xc along the points
represented by 2πD-Tl, which shows that aliasing may
occur if the signal is not band-limited. It is possible to
show that aliasing wil l occur if the signal has components
outside the region defined by

[ ] [ ]{ }ππππ ,,: −×−∈− ��D T 3

The downsampling operation of a discrete signal on
an arbitrary lattice is represented by

[ ] [ ]Dnn xy = 4

Following the same reasoning used in Equations 1-3, we
can relate the spectrum of y[n] with that of x[n]. We will
find that
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where ki is the integer vector that represents the i-th coset
of the sampling lattice.

The upsampling operation is defined as the inverse
operation

[ ] [ ]nDn Txy −= 6

with the constraint that this operation is only valid where
D-Tn maps to valid points of x[n], being defined as 0 when
this doesn’ t occur. Its frequency representation is given by

( ) ( )�D� TXY = 7

For a further discussion of effects of arbitrary
sampling on images, we refer the reader to [4] and [8].

We are  interested in quincunx sampling, which is
described by vectors q1 = [ 1 1 ] and q2 = [ 1 –1 ]. We
define the sampling matrix Q = [ q1 q2 ]

T, below, as the
quincunx sampling matrix
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Quincunx sampling consists in sampling with
diagonal regular periodicity, as shown in Figure 1. The
vectors q1 and q2 defines the directions shown in the
figure as t1’ and t2’ , respectively. It is easy to see that
diagonal periodicity of this sampling strategy is equivalent
to rectangular sampling in a set of axis rotated 45o.
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Figure 1: Quincunx sampling lattice. Shaded
points represent the second coset of the lattice.

Since |det Q| = 2, the cosets of the quincunx sampling
lattice can be represented by two vectors
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That also means that each decomposition of the signal wil l
result in two subbands. We substitute the definitions in
Equations 8 and 9 in Equation 5 to obtain the frequency
representation of the quincunx downsampled signal from
a rectangular one, and obtain
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where ππ = [ π π ]T = 2πQ-Tk1. The second term inside the
brackets in Equation 10 is the aliased component in the
quincunx downsampling, which needs to be made null in
the reconstruction process. From that, and also from
Equation 3, it’s easy to see that aliasing wil l not occur if
the spectrum of the signal is band-limited according to

πωω <+ 21 11

Equation 11 represents a diamond shaped spectrum, as
can be seen in Figure 2.

3   Filter Design

Tipicall y, a subband decomposition system consists of a
filter bank followed by downsampling by the appropriate
sampling periods, generating one subband for each
analysis filter Hi(ωω) in the filter bank. Each signal is then
processed – eg, compressed, used for feature detection or
extraction, transmitted, etc. – and after processing, if
needed, the original signal is reconstructed from its
subbands. The reconstruction process is a combination of
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Figure 2: Frequency band of a quincunx
downsampled image.

the upsampled and filtered version of all the subbands.
The filters Gi(ωω) in the reconstruction portion are

called synthesis filters. If the reconstructed signal at the
end of the process is a perfect copy of the original, we say
that perfect reconstruction is provided.

Figure 3 shows the subband decomposition of a
signal for a quincunx sampling lattice. The symbol Q↓
represents quincunx downsampling, and Q↑ represents
quincunx upsampling. There wil l be only two subbands,
so only two filters are needed in the filter bank.
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Figure 3: Quincunx subband decomposition and
reconstruction of a signal

Each subband Yi(ωω) resulting from the analysis of the
signal wil l be given by
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Following directly from Figure 3, the reconstructed
signal wil l be
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Combining Equations 12 and 13, we get
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From Equation 14 is possible to derive the
conditions of perfect reconstruction for a filter bank. The
first parcel of the right hand of the equation represents the
desired part of the signal, while the second parcel
represents the aliased terms. If we satisfy

( ) ( ) ( ) ( ) 0
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then the aliasing will be cancelled and the signal wil l be
perfect reconstructed. The term in the right hand of
Equation 15 means that the signal may suffer a delay. We
will be interested in situations where the delay equals zero
in both axes, to simplify the analysis.

The choice of filters that satisfy Equations 15 and 16
are numerous and diff icult. There are numerous
techniques to filter design, including, but not limited to,
optimization of a cost function [4, 11, 12], mathematical
definitions and simmetries [6, 13], and transformations on
one-dimension filters to generate a two dimensional one
[14, 15]. For any technique, the conditions stabli shed in
Equations 15 and 16 are enough to obtain a perfect
reconstruction filter bank. Also, note that solving those
equations wil l also satisfy the anti-aliasing condition
determined by Equation 11.

A classical solution to this set of equations is given
by the quadrature mirror filters (QMF) [16, 17]. By
making
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it can be proved that aliasing will be cancelled. Thus, it is
needed to design only the lowpass analysis filter, and the
others can be derived from it. This choice of filters leads
to the following cost function:
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where passband, for a low-pass quincunx filter, is given
by Equation 11, and stopband is its complement in the
frequency plane (ie, |ω1|+|ω2|>π). Equation 18 is a direct
extension of [1].

Cost function optimization can benefit from
simmetry caused by the quincunx sampling. It is possible
to divide the filter mask in rings [6] where the values of



the coefficients are the same. This simmetry can also be
applied while implementing the quincunx subband
decomposition, raising the computational eff iciency of the
algorithm. Figure 4 shows this simmetry for odd length
filters, but it is also possible to apply similar simmetries to
even-length filter masks.
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Figure 4: Rings of simmetry of a quincunx filter
coefficients.

The optimization of the cost function stated in
Equation 18 is diff icult i f the first estimate of the
coefficients is not appropriate. We used as initial values
the filters obtained by frequency sampling, transforming
directly from a one-dimensional QMF H(ω). By choosing
samples at:

( ) ( )210 ωω += HH � 19

and taking the inverse fourier transform, we found a good
set of initial values for the filter coeff icients, and
proceeded with the otimization. In Table 1, we summarize
coefficients obtained using a 5 coefficient QMF as a
starting point. To satisfy the no-delay requirement in
Equation 15, we forced zero-phase of the filter.
Coefficients are ordered as in Figure 3. Also, Figure 5
shows the frequency response of filter H0(ω) obtained.

4   Successive Quincunx Decomposition

One of the strongest features of subband coding is the
possibili ty of implement successive decompositions, in
order to reduce the energy of each subband. In signal
compression, this is a desirable characteristic, since low
energy signals require less bits to be transmitted.
Successive decomposition is achieved by continually
applying subband decomposition on those subbands which
stil l have much energy on them – usually the low
frequency band. For one-dimensional signals, and also in
images being coded with a separable model, it is easy to
see that aplying the same set of filters will result in the

Coefficient
Position Value

1 0.6470
2 0.1360
3 -0.0248
4 -0.0134
5 -0.0089
6 0.0043
7 0.0112
8 0.0000
9 -0.0007
10 0.0000
11 -0.0025
12 -0.0020
13 0.0008
14 -0.0001
15 0.0001

Table 1: Filter coefficients

Figure 5: Lowpass analysis filter.

desired decomposition. We wil l show that this procedure
can also be applied to quincunx decompositions.

First, we note that two successive quincunx
decompositions result in a separable downsampling by a
factor of two. This can easil y be seen, as
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Thus, after two quincunx decompositions, the resulting
band will be rectangular, and the filter designed in the
previous section can be applied again.

The band resulting from the first application of filter
H0(ωω) and quincunx decimation wil l have the shape of a
45o rotated square, which can easil y be seen from
Equation 3. If we apply a rotated version of filter H0(ωω),



H0(Q
-Tωω) and proceed with quincunx decimation, the

resulting band will have the shape
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Since Q-T Q-T = R-T, this shows that as the low
frequency analysis filter of the second quincunx
decomposition, we can use a 45o rotated version of
original filter H0(ωω). It is interesting to note that H0(Q

-Tωω)
is the same filter as before, in respect with the rotated
frequency set of axis ωω’ = Q-Tωω. Thus, the successive
application of H0(ωω) and quincunx downsampling wil l
result in successive quincunx subband decomposition.
Figure 6 shows the proccess.
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Figure 6: Successive quincunx subband
decomposition.

Since each quincunx downsampled subband wil l
have half the number of samples of the previous one, a
data structure is needed to represent these. Each line of a
subband wil l also have half the number of samples of a
line of the original image. We choose to colapse two lines
into one, which allows us to build the image on Figure 7,
which is a quincunx decomposition of level 2. This data
structure, however, is useful to help visualize the coding
process, and it is not necessary that it should be used.
Since a quincunx subband has diagonal regularity, a
sequence of matrices could be used.

5   Compression of Quincunx Subbands

We show now the use of quincunx subbands in the
process of coding and compression of images. There are a
lot of techniques to eff iciently compress image subbands.
We refer the reader to [7] for a complete survey on
modern techniques of scalar and vector quantization
applied to subband coding of images.

Figure 7: Four-level quincunx subband
decomposition of image baboon.

Since our main interest is to compare performances of a
quincunx subband coding with separable, we choose a
simple technique that wil l allow us to obtain data about
the process. Coefficients in each subband are quantized
and then entropy coded. Depending on the level of the
quantization, compression wil l achieve a greater
efficiency, but with the effect of lowering signal-to-noise
ratio.

Self-organizing maps (SOM) [18] were used in order
to find a more appropriated set of quantization levels.
Thus, quantization of the coeff icients was not uniform.
The process of converging a SOM applied to scalar
quantization is simple. Let w be the set of all quantization
levels. A specific subband coefficient X(n) wil l then be
closer to one of this values wk, which is called the winner.
The winner is then updated according to

( )( )kkk wXww −+= nδ 21

where δ is the learning rate. By repeating this process to
every coeff icient in the subband, the result will be a more
appropriate set w of quantization levels. Each subband can
be used many times to converge the SOM to better the
approximation. We repeated the process three times with
each subband.

Entropy coding of the quantized levels was done
using arithmetic coding.

Figure 8 shows the reconstructed images of the
baboon image, coded respectively with 1, 0.5 and 0.25 bit
per pixel. Signal-to-noise ratio to these images is given in
the figure.

Tests were carried with a great variety of images.
Figure 9 shows a plot of variation of average signal-to-
noise ratio according to bits per pixel obtained in image
coding, for rectangular and quincunx downsampling, and
also for the standard cosine transform technique
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Figure 8: a) Original baboon; b) Baboon coded at 1 bpp. SNR = 31.10 dB; c) Baboon coded at 0.5 bpp. SNR =
22.61 dB; d) Baboon coded at 0.25 bpp. SNR = 17.43 dB
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Figure 9: Variation of bit rate and signal-to-noise
ratio for JPEG, sub-band and quincunx coding.

implemented by JPEG. Figure 9 shows that quincunx
performance is pretty close to rectangular one, and both
usually perform better than JPEG.

6   Conclusion

In this paper, we developed an algorithm to perform
successive quincunx downsampling of images, and
analyzed the performance of a subband image coder based
on that procedure. In our preliminary tests, we have found
that, in the context of image coding, quincunx
downsampling performs at least as well as standard
rectangular downsampling. However, the coding
procedure does not take into account redundancies that
may appear in the subbands due to quincunx simmetries.
Research in this topic is being conducted, as well as other



related topics, such as computational complexity and
subjective performance.

This is a work still in development, and thus not all
the data are available. The available results, however,
show that quincunx subband coding performs very closely
to the common rectangular subband coding, sometimes a
li ttle better, sometimes a little worse. These results,
however, refer to objective quality of the reconstructed
images, ie, noise energy and signal to noise ratio. That
suggests us that size of file and noise obtained by this
technique will be very similar to separable sampling. We
expect that further research wil l show that will actuall y
deliver better results.
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