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Abstract

An improved Zernike moment using as a region-based

shape descriptor is presented. The improved Zernike

moment not only has rotation invariance, but also has

scale invariance that the unimproved Zernike moment

does not have. The experimental results show that the

improved Zernike moment has better invariant properties

than unimproved Zernike moment using as region-based

shape descriptor.
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1. Introduction

  In order to retrieve an image from a large database the
descriptor should have enough discriminating power and
immunity to noise. In addition, the descriptor should be
invariant to scale and rotation, not to mention the
computation efficiency. The Zernike moment descriptor
has such desirable properties: rotation invariance,
robustness to noise, expression efficiency, fast
computation and multi-level representation for describing
the various shapes of pattern [1]. But there is a drawback
for the Zernike moment descriptor, it does not have scale
invariance. At present, with a proper normalization
method of images, scale invariance can also be achieved
in some degree [2,3], but it is not the real scale invariance.
The Zernike moments gained by using this method can

not well reflect the feature of original shape, because
scaling a shape will unavoidable lead to the loss of some
information in the shape, especially when the shape is
shrunk. For example, when a circle shape in a digital
image is shrunk to some degree, it maybe becomes a
square shape.
  In this paper, a region-based shape descriptor is
presented, which utilizes a set of the magnitudes of
Zernike moments. Then we analysis the invariance
properties of Zernike moments and present improved
Zernike moments. Finally we show that the improved
Zernike moment has better invariant properties than
unimproved Zernike moment using as region-based shape
descriptor, which can be used effectively as a global
shape descriptor of an image, especially for a large image
database.

2. Definition of Zernike moments

  In ( , )ρ θ  polar coordinates, the Zernike radial

polynomials { }( )nmR ρ  are defined as [3]
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where n  is a non-negative integer, and m  is a non-zero

integer subject to the following constrains: | |n m−  is

even and | |m n≤ .

The ( , )n m  order of the Zernike basis function [2],

( , )nmV ρ θ , defined over the unit disk is

( , ) ( ) exp( ),     1nm nmV R jmρ θ ρ θ ρ= ≤ (2)

The Zernike moment [4] of an image is then defined as

unit disk

1 ( , ) ( , )nm nm

n
Z V fρ θ ρ θ

π
∗+

= ∫∫ (3)

where nmV ∗  is a complex conjugate of nmV .

3. Analysis of invariance properties of
Zernike moments

  To calculate the Zernike moments of an image

( , )f x y , the image (or region of interest) is first mapped

to the unit disk using polar coordinates, where the centre
of the image is the origin of the unit disk. Those pixels
falling outside the unit disk are not used in the calculation.
The coordinates are then described by ρ  which is the

length of the vector from the origin to the coordinate
point and θ  which is the angle from the x  axis to the
vector ρ , by convention measured from the positive x

axis in a counter clockwise direction. The mapping from
Cartesian to polar coordinates is:

cosx ρ θ= siny ρ θ= (4)

where

2 2x yρ = + 1tan y

x
θ −  =  

 
(5)

However, 1tan A−  in practice is often defined over the

interval 
2 2
π πθ− ≤ ≤ , so care must be taken as to

which quadrant the Cartesian coordinates appear in.
Translation and scale invariance can be achieved by
normalizing the image using the Cartesian moments prior
to calculation of the Zernike moments [2]. Translation
invariance is achieved by moving the origin to the centre
of the image by using the centralized moments,

causing. 01 10 0m m= = . Following this, scale invariance

is produced by altering each object so that its area (or

pixel count for a binary image) is 00m β= , where β

is a predetermined value. Both invariance properties can
be achieved using:
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where 
00

a
m

β
=  and ( , )g x y  is the new translated

and scaled function. The error involved in the discrete
implementation can be reduced by interpolation. As we
have stated that the scale invariance using this method is
not the real scale invariance.
  Further, the absolute value of a Zernike moment is
rotation invariant as reflected in the mapping of the image
to the unit disk. The rotation of the shape around the unit

disk is expressed as a phase change, if φ  is the angle of

rotation, R
nmZ  is the Zernike moment of the rotated

image and nmZ  is the Zernike moment of the original

image then:

exp( )R
nm nmZ Z jmφ= − (7)

| | | exp( ) | | |R
nm nm nmZ Z jm Zφ= − = (8)



  Fig. 1 shows the process of extracting the Zernike
moment descriptor from an image. First, the input image
is binarized. Since the Zernike moments are defined over
a unit disk, the radius R  of a circle is determined to
enclose the shape completely from the centroid of the
binarized shape in the image to the outer most pixel of the
shape. The shape is then re-sampled to normalize to the
predetermined size [5]. This normalization step helps to
achieve the scale invariance for the descriptor. Thirty-six
Zernike moments of order zero to ten in n  and m  are
then extracted from the normalized image, and the
magnitudes are used as the descriptor. The total number
of moments used in the shape descriptor was determined
experimentally.
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Figure 1: The block diagram of Zernike moment extraction.

4. Improvement of Zernike moment
descriptor

(1). Get the order (0,0) geometric moment 00m  of the

image.

00 ( , )m f x y dxdy= ∫∫ (9)

from physics viewpoint, 00m  is the expression of mass

or area of an image.
(2). Compute the various order Zernike moments
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(3). Normalize the Zernike moments
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where, mnZ  is the improved Zernike moments we

presented.

(4). Because mnZ  is Complex, we often use the Zernike

moments modules | |mnZ  as the features of shape in the

recognition of pattern. In the following parts of the paper,
Zernike moments mean the Zernike moments modules.
Fig. 2 shows the process of extracting the improved
Zernike moment descriptor from an image. What in the
dashed rectangle is the improved Zernike moment
extraction.
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Figure 2: The block diagram of improved Zernike moment

extraction

  In the improved Zernike moments, there are three

moments are constant, 00
1Z
π

=  and 11 1-1Z =Z 0= .

Before proof above proposition, we first give the
definition of radial-polar coordinate system.



Definition 1

Let f  be an image and ( , )c cx y  be its centroid. We

use

2 2( ) ( )c cx x y yρ = − + − (12)

1tan (( ) /( ))c cy y x xθ −= − − (13)

to define our radial-polar coordinate system.
Proof.

We have
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Now by Definition 1, the support of f  is enclosed by

the unit disk 2D . We may thus remove the domain of
integration, yielding
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We also have
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so

11 11( , ) ( ) exp( ) (cos sin )V R i iρ θ ρ θ ρ θ θ∗ = − = −

(19)

Taking real and imaginary components of 11( , )V ρ θ∗ , we

have

11Re ( , ) cosV ρ θ ρ θ∗ = (20)

11Im ( , ) sinV ρ θ ρ θ∗ = − (21)

and using Definition 1, this gives

11Re ( , ) cV x xρ θ∗ = − (22)

11Im ( , ) ( )cV y yρ θ∗ = − − (23)

Hence
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Now by Definition 1, the support of f  is bounded by

the unit disk 2D . We may thus remove the domain of
integration, yielding
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where 10m  is order (1,0) geometric moment, we know

10 01 0m m= =  when the origin of the Cartesian

coordinates locates the center of a shape.



Similarly 11Im 0Z = , so 11 0Z = , Then 1 1 0Z − =  by

( )*nm n mZ Z −= .

5. Experimental Results

  To evaluate the performance of the proposed improved
Zernike moment descriptor, experiments have been
conducted. The experiments mainly address the improved
Zernike moments possess the better properties of rotation
invariance and scale invariance than unimproved Zernike
moments. The test image database consists of about 3,000
device-mark type trademark images (marks that contain
graphical or figurative elements only) in MPEG-7 test
material ITEM S8. The first 10 trademark images are
shown in Figure 3.

    
   3(a)     3(b)     3(c)      3(d)    3(e)

    
   3(f)      3(g)      3(h)      3(i)     3(j)
Figure 3: the first 10 trademark images of 3,000 device-mark

type trademark images

The experiments are made according to the following
steps:

Step 1.  Image Transforming: Transformations have
been applied to the test images as described below.
1. Rotation – The image is rotated by the following angles:

5°, 30°, 50°, 90°, 120° and 150°.
2. Scale - The image is scaled by the following factors:

300%, 230%, 120% and 90%.
3. Rotation/scale - The image is printed on a laser printer.
Ten prints of each image were digitized using both video
and digital cameras, with rotation and scale changes
except for perspective effects.

Step 2. Improved Zernike moments Computing: The
improved Zernike moments of the images transformed are
computed.

Step 3. Analysis of Improved Zernike moments: Plot it
to show the improved Zernike moments possesses the
properties of rotation invariance and scale invariance.

Figure 4 shows the experiment result of Figure 3(a) for
improved Zernike moments and unimproved Zernike
moments. Figure 5 shows the experiment result of Figure
3(b) for improved Zernike moments and unimproved
Zernike moments.
  Because the differences of the improved corresponding
Zernike moments of the transformed images are very tiny,
it is high difficult to show all of their discrepancy, we
only show the improved Zernike moments of original
image, the image rotated by 50° angle and the image
scaled by 120% factor. Their improved Zernike moments
are plotted in the blue dot, green plus sign and red asterisk
respectively in Figure 4(a) and 5(a). We also plot the
unimproved Zernike moments of corresponding images in
Figure 4(b) and 5(b). From above figures, we can see that
improved Zernike moments possess better rotation
invariance and scale invariance properties than
unimproved Zernike moments.
  Figure 6 shows the mean error values of improved and
unimproved Zernike moments respectively for the first 10
trademark images. From this figure we can see the mean
error values of improved Zernike moments are smaller
than unimproved.

6. Conclusion

  In this paper, we showed that the improved Zernike
moment descriptor not only has better rotation invariance,
but also has better scale invariance than unimproved
Zernike moment descriptor. It was very effective in
retrieving an image from a large image database.
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4(a) improved Zernike moments



4(b): unimproved Zernike moments

Figure 4: Invariance of Zernike moments of 3(a)

5(a) improved Zernike moments



5(b): unimproved Zernike moments

Figure 5: Invariance of Zernike moments of 3(b)

Figure 6: Mean error values of improved and unimproved Zernike moments


