<?xml version="1.0" encoding="ISO-8859-1"?>
<metadatalist>
	<metadata ReferenceType="Conference Proceedings">
		<repository>sid.inpe.br/sibgrapi@80/2007/07.20.08.40</repository>
		<metadatarepository>sid.inpe.br/sibgrapi@80/2007/07.20.08.40.06</metadatarepository>
		<site>sibgrapi.sid.inpe.br 802</site>
		<citationkey>Montoya-ZegarraLeitTorr:2007:RoScSt</citationkey>
		<author>Montoya-Zegarra, Javier Alexander,</author>
		<author>Leite, Neucimar J.,</author>
		<author>Torres da Silva, Ricardo,</author>
		<affiliation>Institute of Computing, State University of Campinas</affiliation>
		<affiliation>Institute of Computing, State University of Campinas</affiliation>
		<affiliation>Institute of Computing, State University of Campinas</affiliation>
		<title>Rotation-Invariant and Scale-Invariant Steerable Pyramid Decomposition for Texture Image Retrieval</title>
		<conferencename>Brazilian Symposium on Computer Graphics and Image Processing, 20 (SIBGRAPI)</conferencename>
		<year>2007</year>
		<editor>Falcão, Alexandre Xavier,</editor>
		<editor>Lopes, Hélio Côrtes Vieira,</editor>
		<booktitle>Proceedings</booktitle>
		<date>Oct. 7-10, 2007</date>
		<publisheraddress>Los Alamitos</publisheraddress>
		<publisher>IEEE Computer Society</publisher>
		<conferencelocation>Belo Horizonte</conferencelocation>
		<keywords>Steerable Pyramid Decomposition, Texture, Content-Based Image Retrieval, Texture-based Image Retrieval, Feature Extraction.</keywords>
		<abstract>This paper proposes a new rotation-invariant and scale-invariant representation for texture image retrieval based on Steerable Pyramid Decomposition. By calculating the mean and standard deviation of decomposed image subbands, the texture feature vectors are extracted. To obtain rotation or scale invariance, the feature elements are aligned by considering either the dominant orientation or dominant scale of the input textures. Experiments were conducted on the Brodatz database aiming to compare our approach to the conventional Steerable Pyramid Decomposition, and a recent proposal for texture characteriztion based on Gabor Wavelets  with regard to their retrieval effectiveness. Results demonstrate the superiority of the proposed method in rotated and scaled image datasets.</abstract>
		<language>en</language>
		<tertiarytype>Full Paper</tertiarytype>
		<format>Printed, On-line.</format>
		<size>892 Kbytes</size>
		<numberoffiles>1</numberoffiles>
		<targetfile>montoya.zegarra-RotInvSclInvTexImgRet.pdf</targetfile>
		<lastupdate>2007:07.20.21.19.24 sid.inpe.br/banon/2001/03.30.15.38 administrator</lastupdate>
		<metadatalastupdate>2020:02.19.03.06.19 sid.inpe.br/banon/2001/03.30.15.38 administrator {D 2007}</metadatalastupdate>
		<mirrorrepository>dpi.inpe.br/banon-pc2@80/2006/08.30.19.27</mirrorrepository>
		<usergroup>jmontoyaz@gmail.com administrator</usergroup>
		<visibility>shown</visibility>
		<transferableflag>1</transferableflag>
		<hostcollection>sid.inpe.br/banon/2001/03.30.15.38</hostcollection>
		<contenttype>External Contribution</contenttype>
		<lasthostcollection>sid.inpe.br/banon/2001/03.30.15.38</lasthostcollection>
		<url>http://sibgrapi.sid.inpe.br/rep-/sid.inpe.br/sibgrapi@80/2007/07.20.08.40</url>
	</metadata>
</metadatalist>