Identity statement area
Reference TypeConference Paper (Conference Proceedings)
Last Update2006: administrator
Metadata Last Update2020: administrator
Citation KeyCouprieSaudBert:2006:EuHoSk
TitleEuclidean homotopic skeleton based on critical kernels
Date8-11 Oct. 2006
Access Date2021, Jan. 19
Number of Files1
Size284 KiB
Context area
Author1 Couprie, Michel
2 Saude, André Vital
3 Bertrand, Gilles
Affiliation1 Institut Gaspard-Monge, Laboratoire A2SI, Groupe ESIEE
2 State University of Campinas, DCA-FEEC-UNICAMP
3 Institut Gaspard-Monge, Laboratoire A2SI, Groupe ESIEE
EditorOliveira Neto, Manuel Menezes de
Carceroni, Rodrigo Lima
Conference NameBrazilian Symposium on Computer Graphics and Image Processing, 19 (SIBGRAPI)
Conference LocationManaus
Book TitleProceedings
PublisherIEEE Computer Society
Publisher CityLos Alamitos
Tertiary TypeFull Paper
History2006-08-28 08:02:44 :: couprie -> banon ::
2006-08-30 21:48:26 :: banon -> couprie ::
2008-07-17 14:11:05 :: couprie -> administrator ::
2009-08-13 20:38:17 :: administrator -> banon ::
2010-08-28 20:02:26 :: banon -> administrator ::
2020-02-19 03:17:51 :: administrator -> :: 2006
Content and structure area
Is the master or a copy?is the master
Content Stagecompleted
Content TypeExternal Contribution
Keywordsparallel thinning, Euclidean distance, medial axis, homotopy, critical kernels.
AbstractCritical kernels constitute a general framework settled in the category of abstract complexes for the study of parallel thinning in any dimension. It allows to easily design parallel thinning algorithms which produce new types of skeletons, with specific geometrical properties, while guaranteeing their topological soundness. In this paper, we demonstrate that it is possible to define a skeleton based on the Euclidean distance, rather than on the common discrete distances, in the context of critical kernels. We provide the necessary definitions as well as an efficient algorithm to compute this skeleton.
source Directory Contentthere are no files
agreement Directory Contentthere are no files
Conditions of access and use area
data URL
zipped data URL
Target Fileeuclideankernels_versionfinale.pdf
User Groupcouprie
Allied materials area
Notes area
Empty Fieldsaccessionnumber archivingpolicy archivist area callnumber copyholder copyright creatorhistory descriptionlevel dissemination documentstage doi edition electronicmailaddress group holdercode isbn issn label lineage mark mirrorrepository nextedition nexthigherunit notes numberofvolumes orcid organization pages parameterlist parentrepositories previousedition previouslowerunit progress project readergroup readpermission resumeid rightsholder secondarydate secondarykey secondarymark secondarytype serieseditor session shorttitle sponsor subject tertiarymark type url versiontype volume