<?xml version="1.0" encoding="ISO-8859-1"?>
<metadatalist>
	<metadata ReferenceType="Conference Proceedings">
		<site>sibgrapi.sid.inpe.br 802</site>
		<identifier>6qtX3pFwXQZG2LgkFdY/LKkn3</identifier>
		<repository>sid.inpe.br/sibgrapi@80/2006/07.13.22.39</repository>
		<lastupdate>2006:07.13.23.00.33 sid.inpe.br/banon/2001/03.30.15.38 administrator</lastupdate>
		<metadatarepository>sid.inpe.br/sibgrapi@80/2006/07.13.22.39.53</metadatarepository>
		<metadatalastupdate>2020:02.19.03.17.37 sid.inpe.br/banon/2001/03.30.15.38 administrator {D 2006}</metadatalastupdate>
		<citationkey>PaivaLopeLewiFigu:2006:RoAdMe</citationkey>
		<title>Robust adaptive meshes for implicit surfaces</title>
		<format>On-line</format>
		<year>2006</year>
		<date>8-11 Oct. 2006</date>
		<numberoffiles>1</numberoffiles>
		<size>1294 KiB</size>
		<author>Paiva, Afonso,</author>
		<author>Lopes, Hélio,</author>
		<author>Lewiner, Thomas,</author>
		<author>de Figueiredo, Luiz Henrique,</author>
		<affiliation>Departamento de Matematica. PUC - Rio de Janeiro</affiliation>
		<affiliation>Departamento de Matematica. PUC - Rio de Janeiro</affiliation>
		<affiliation>Departamento de Matematica. PUC - Rio de Janeiro</affiliation>
		<affiliation>Visgraf. IMPA</affiliation>
		<editor>Oliveira Neto, Manuel Menezes de,</editor>
		<editor>Carceroni, Rodrigo Lima,</editor>
		<e-mailaddress>tomlew@mat.puc-rio.br</e-mailaddress>
		<conferencename>Brazilian Symposium on Computer Graphics and Image Processing, 19 (SIBGRAPI)</conferencename>
		<conferencelocation>Manaus</conferencelocation>
		<booktitle>Proceedings</booktitle>
		<publisher>IEEE Computer Society</publisher>
		<publisheraddress>Los Alamitos</publisheraddress>
		<transferableflag>1</transferableflag>
		<contenttype>External Contribution</contenttype>
		<tertiarytype>Full Paper</tertiarytype>
		<keywords>Implicit Surface, Dual Marching Cubes, Robust Algorithms, Geometric Modelling.</keywords>
		<abstract>This work introduces a robust algorithm for computing good polygonal approximations of implicit surfaces, where robustness entails recovering the exact topology of the implicit surface. Furthermore, the approximate triangle mesh adapts to the geometry and to the topology of the real implicit surface. This method generates an octree subdivided according to the interval evaluation of the implicit function in order to guarantee the robustness, and to the interval automatic differentiation in order to adapt the octree to the geometry of the implicit surface. The triangle mesh is then generated from that octree through an enhanced dual marching.</abstract>
		<language>en</language>
		<targetfile>hlopes-adaptimpl.pdf</targetfile>
		<usergroup>tomlew administrator</usergroup>
		<visibility>shown</visibility>
		<hostcollection>sid.inpe.br/banon/2001/03.30.15.38</hostcollection>
		<lasthostcollection>sid.inpe.br/banon/2001/03.30.15.38</lasthostcollection>
		<url>http://sibgrapi.sid.inpe.br/rep-/sid.inpe.br/sibgrapi@80/2006/07.13.22.39</url>
	</metadata>
</metadatalist>