Close
Metadata

Identity statement area
Reference TypeConference Paper (Conference Proceedings)
Sitesibgrapi.sid.inpe.br
Identifier6qtX3pFwXQZG2LgkFdY/LJoiq
Repositorysid.inpe.br/sibgrapi@80/2006/07.12.07.35
Last Update2006:07.12.07.35.05 administrator
Metadatasid.inpe.br/sibgrapi@80/2006/07.12.07.35.07
Metadata Last Update2020:02.19.03.17.34 administrator
Citation KeyCraizerLewiMorv:2006:PaPoDi
TitleParabolic Polygons and Discrete Affine Geometry
FormatOn-line
Year2006
Access Date2021, Jan. 25
Number of Files1
Size319 KiB
Context area
Author1 Craizer, Marcos
2 Lewiner, Thomas
3 Morvan, Jean-Marie
Affiliation1 Departamento de Matematica. PUC - Rio de Janeiro
2 Departamento de Matematica. PUC - Rio de Janeiro
3 Universite Claude Bernard. Lyon
EditorOliveira Neto, Manuel Menezes de
Carceroni, Rodrigo Lima
e-Mail Addresstomlew@mat.puc-rio.br
Conference NameBrazilian Symposium on Computer Graphics and Image Processing, 19 (SIBGRAPI)
Conference LocationManaus
Date8-11 Oct. 2006
Book TitleProceedings
PublisherIEEE Computer Society
Publisher CityLos Alamitos
Tertiary TypeFull Paper
History2006-07-12 07:35:07 :: tomlew -> banon ::
2006-08-30 21:49:07 :: banon -> tomlew ::
2008-07-17 14:11:02 :: tomlew -> administrator ::
2009-08-13 20:38:01 :: administrator -> banon ::
2010-08-28 20:02:22 :: banon -> administrator ::
2020-02-19 03:17:34 :: administrator -> :: 2006
Content and structure area
Is the master or a copy?is the master
Content Stagecompleted
Transferable1
Content TypeExternal Contribution
KeywordsAffine Differential Geometry, Affine Curvature.
AbstractGeometry processing applications estimate the local geometry of objects using information localized at points. They usually consider information about the normal as a side product of the points coordinates. This work proposes parabolic polygons as a model for discrete curves, which intrinsically combines points and normals. This model is naturally affine invariant, which makes it particularly adapted to computer vision applications. This work introduces estimators for affine length and curvature on this discrete model and presents, as a proof-of-concept, an affine in- variant curve reconstruction.
source Directory Contentthere are no files
agreement Directory Contentthere are no files
Conditions of access and use area
data URLhttp://urlib.net/rep/6qtX3pFwXQZG2LgkFdY/LJoiq
zipped data URLhttp://urlib.net/zip/6qtX3pFwXQZG2LgkFdY/LJoiq
Languageen
Target FileAffineEstimators_Sibgrapi.pdf
User Grouptomlew
administrator
Visibilityshown
Allied materials area
Host Collectionsid.inpe.br/banon/2001/03.30.15.38
Notes area
Empty Fieldsaccessionnumber archivingpolicy archivist area callnumber copyholder copyright creatorhistory descriptionlevel dissemination documentstage doi edition electronicmailaddress group holdercode isbn issn label lineage mark mirrorrepository nextedition nexthigherunit notes numberofvolumes orcid organization pages parameterlist parentrepositories previousedition previouslowerunit progress project readergroup readpermission resumeid rightsholder secondarydate secondarykey secondarymark secondarytype serieseditor session shorttitle sponsor subject tertiarymark type url versiontype volume

Close