<?xml version="1.0" encoding="ISO-8859-1"?>
<metadatalist>
	<metadata ReferenceType="Conference Proceedings">
		<identifier>6qtX3pFwXQZG2LgkFdY/LFJdm</identifier>
		<repository>sid.inpe.br/sibgrapi@80/2006/07.07.19.03</repository>
		<metadatarepository>sid.inpe.br/sibgrapi@80/2006/07.07.19.03.30</metadatarepository>
		<site>sibgrapi.sid.inpe.br 802</site>
		<citationkey>KitaniThomGill:2006:StDiMo</citationkey>
		<author>Kitani, Edson,</author>
		<author>Thomaz, Carlos,</author>
		<author>Gillies, Duncan,</author>
		<affiliation>Department of Electrical Engineering, Centro Universitário da FEI, São Paulo, Brazil</affiliation>
		<affiliation>Department of Electrical Engineering, Centro Universitário da FEI, São Paulo, Brazil</affiliation>
		<affiliation>Department of Computing, Imperial College, London, UK</affiliation>
		<title>A Statistical Discriminant Model for Face Interpretation and Reconstruction</title>
		<conferencename>Brazilian Symposium on Computer Graphics and Image Processing, 19 (SIBGRAPI)</conferencename>
		<year>2006</year>
		<editor>Oliveira Neto, Manuel Menezes de,</editor>
		<editor>Carceroni, Rodrigo Lima,</editor>
		<booktitle>Proceedings</booktitle>
		<date>8-11 Oct. 2006</date>
		<publisheraddress>Los Alamitos</publisheraddress>
		<publisher>IEEE Computer Society</publisher>
		<conferencelocation>Manaus</conferencelocation>
		<keywords>Statistical discriminant model, face interpretation and reconstruction.</keywords>
		<abstract>Multivariate statistical approaches have played an important role of recognising face images and charac-terizing their differences. In this paper, we introduce the idea of using a two-stage separating hyper-plane, here called Statistical Discriminant Model (SDM), to interpret and reconstruct face images.  Analogously to the well-known Active Appearance Model proposed by Cootes et. al, SDM requires a previous alignment of all the images to a common template to minimise varia-tions that are not necessarily related to differences between the faces.  However, instead of using landmarks or annotations on the images, SDM is based on the idea of using PCA to reduce the dimensionality of the original images and a maximum uncertainty linear classifier (MLDA) to characterise the most discrimi-nant changes between the groups of images. The experimental results based on frontal face images indicate that the SDM approach provides an intuitive interpretation of the differences between groups, reconstructing characteristics that are very subjective in human beings, such as beauty and happiness.</abstract>
		<language>en</language>
		<tertiarytype>Full Paper</tertiarytype>
		<format>On-line</format>
		<size>303 KiB</size>
		<numberoffiles>1</numberoffiles>
		<targetfile>thomaz-faces.pdf</targetfile>
		<lastupdate>2006:07.07.19.03.29 sid.inpe.br/banon/2001/03.30.15.38 administrator</lastupdate>
		<metadatalastupdate>2020:02.19.03.17.34 sid.inpe.br/banon/2001/03.30.15.38 administrator {D 2006}</metadatalastupdate>
		<e-mailaddress>cet@fei.edu.br</e-mailaddress>
		<usergroup>cethomaz administrator</usergroup>
		<visibility>shown</visibility>
		<transferableflag>1</transferableflag>
		<hostcollection>sid.inpe.br/banon/2001/03.30.15.38</hostcollection>
		<contenttype>External Contribution</contenttype>
		<lasthostcollection>sid.inpe.br/banon/2001/03.30.15.38</lasthostcollection>
		<url>http://sibgrapi.sid.inpe.br/rep-/sid.inpe.br/sibgrapi@80/2006/07.07.19.03</url>
	</metadata>
</metadatalist>