Close

1. Identity statement
Reference TypeConference Paper (Conference Proceedings)
Sitesibgrapi.sid.inpe.br
Holder Codeibi 8JMKD3MGPEW34M/46T9EHH
Identifier8JMKD3MGPEW34M/45E57FS
Repositorysid.inpe.br/sibgrapi/2021/09.13.20.01
Last Update2021:09.13.20.01.21 (UTC) administrator
Metadata Repositorysid.inpe.br/sibgrapi/2021/09.13.20.01.21
Metadata Last Update2022:09.10.00.16.17 (UTC) administrator
Citation KeySchirmerVelhLope:2021:SeGrAt
TitleSemantic graph attention networks and tensor decompositions for computer vision and computer graphics
FormatOn-line
Year2021
Access Date2024, Sep. 08
Number of Files1
Size18647 KiB
2. Context
Author1 Schirmer, Luiz
2 Velho, Luiz
3 Lopes, Hélio
Affiliation1 PUC-Rio
2 IMPA
3 PUC-Rio
EditorPaiva, Afonso
Menotti, David
Baranoski, Gladimir V. G.
Proença, Hugo Pedro
Junior, Antonio Lopes Apolinario
Papa, João Paulo
Pagliosa, Paulo
dos Santos, Thiago Oliveira
e Sá, Asla Medeiros
da Silveira, Thiago Lopes Trugillo
Brazil, Emilio Vital
Ponti, Moacir A.
Fernandes, Leandro A. F.
Avila, Sandra
e-Mail Addressschirmer.luizj@gmail.com
Conference NameConference on Graphics, Patterns and Images, 34 (SIBGRAPI)
Conference LocationGramado, RS, Brazil (virtual)
Date18-22 Oct. 2021
PublisherSociedade Brasileira de Computação
Publisher CityPorto Alegre
Book TitleProceedings
Tertiary TypeMaster's or Doctoral Work
History (UTC)2021-09-13 20:01:21 :: schirmer.luizj@gmail.com -> administrator ::
2022-09-10 00:16:17 :: administrator -> :: 2021
3. Content and structure
Is the master or a copy?is the master
Content Stagecompleted
Transferable1
KeywordsNeural Networks
Gaph Neural Networks
Human Pose Estimation
AbstractThis thesis proposes new architectures for deep neural networks with attention enhancement and multilinear algebra methods to increase their performance. We also explore graph convolutions and their particularities. We focus here on the problems related to real-time human pose estimation. We explore different architectures to reduce computational complexity, and, as a result, we propose two novel neural network models for 2D and 3D pose estimation. We also introduce a new architecture for Graph attention networks called Semantic Graph Attention.
Arrangementurlib.net > SDLA > Fonds > SIBGRAPI 2021 > Semantic graph attention...
doc Directory Contentaccess
source Directory Contentthere are no files
agreement Directory Content
agreement.html 13/09/2021 17:01 1.3 KiB 
4. Conditions of access and use
data URLhttp://sibgrapi.sid.inpe.br/ibi/8JMKD3MGPEW34M/45E57FS
zipped data URLhttp://sibgrapi.sid.inpe.br/zip/8JMKD3MGPEW34M/45E57FS
Languageen
Target FileWTD_Sibgrapi_2021 (4).pdf
User Groupschirmer.luizj@gmail.com
Visibilityshown
5. Allied materials
Mirror Repositorysid.inpe.br/banon/2001/03.30.15.38.24
Next Higher Units8JMKD3MGPEW34M/45PQ3RS
Citing Item Listsid.inpe.br/sibgrapi/2021/11.12.11.46 63
Host Collectionsid.inpe.br/banon/2001/03.30.15.38
6. Notes
Empty Fieldsarchivingpolicy archivist area callnumber contenttype copyholder copyright creatorhistory descriptionlevel dissemination documentstage doi edition electronicmailaddress group isbn issn label lineage mark nextedition notes numberofvolumes orcid organization pages parameterlist parentrepositories previousedition previouslowerunit progress project readergroup readpermission resumeid rightsholder schedulinginformation secondarydate secondarykey secondarymark secondarytype serieseditor session shorttitle sponsor subject tertiarymark type url versiontype volume


Close