1. Identity statement | |
Reference Type | Conference Paper (Conference Proceedings) |
Site | sibgrapi.sid.inpe.br |
Holder Code | ibi 8JMKD3MGPEW34M/46T9EHH |
Identifier | 8JMKD3MGPEW34M/45CUTES |
Repository | sid.inpe.br/sibgrapi/2021/09.06.22.34 |
Last Update | 2021:09.06.22.53.01 (UTC) administrator |
Metadata Repository | sid.inpe.br/sibgrapi/2021/09.06.22.34.57 |
Metadata Last Update | 2022:09.10.00.16.17 (UTC) administrator |
DOI | 10.1109/SIBGRAPI54419.2021.00011 |
Citation Key | PontiSantRibeCava:2021:AvPiGo |
Title | Training Deep Networks from Zero to Hero: avoiding pitfalls and going beyond  |
Format | On-line |
Year | 2021 |
Access Date | 2025, Mar. 21 |
Number of Files | 1 |
Size | 1275 KiB |
|
2. Context | |
Author | 1 Ponti, Moacir Antonelli 2 Santos, Fernando Pereira dos 3 Ribeiro, Leo Sampaio Ferraz 4 Cavallari, Gabriel Biscaro |
Affiliation | 1 Universidade de São Paulo 2 Universidade de São Paulo 3 Universidade de São Paulo 4 Universidade de São Paulo |
Editor | Paiva, Afonso Menotti, David Baranoski, Gladimir V. G. Proença, Hugo Pedro Junior, Antonio Lopes Apolinario Papa, João Paulo Pagliosa, Paulo dos Santos, Thiago Oliveira e Sá, Asla Medeiros da Silveira, Thiago Lopes Trugillo Brazil, Emilio Vital Ponti, Moacir A. Fernandes, Leandro A. F. Avila, Sandra |
e-Mail Address | moacirponti@gmail.com |
Conference Name | Conference on Graphics, Patterns and Images, 34 (SIBGRAPI) |
Conference Location | Gramado, RS, Brazil (virtual) |
Date | 18-22 Oct. 2021 |
Publisher | IEEE Computer Society |
Publisher City | Los Alamitos |
Book Title | Proceedings |
Tertiary Type | Tutorial |
History (UTC) | 2021-09-06 22:53:01 :: moacirponti@gmail.com -> administrator :: 2021 2022-03-03 04:41:59 :: administrator -> menottid@gmail.com :: 2021 2022-03-03 12:30:25 :: menottid@gmail.com -> administrator :: 2021 2022-09-10 00:16:17 :: administrator -> :: 2021 |
|
3. Content and structure | |
Is the master or a copy? | is the master |
Content Stage | completed |
Transferable | 1 |
Version Type | finaldraft |
Keywords | Deep Learning Convolutional Networks Survey Training |
Abstract | Training deep neural networks may be challenging in real world data. Using models as black-boxes, even with transfer learning, can result in poor generalization or inconclusive results when it comes to small datasets or specific applications. This tutorial covers the basic steps as well as more recent options to improve models, in particular, but not restricted to, supervised learning. It can be particularly useful in datasets that are not as well-prepared as those in challenges, and also under scarce annotation and/or small data. We describe basic procedures as data preparation, optimization and transfer learning, but also recent architectural choices such as use of transformer modules, alternative convolutional layers, activation functions, wide/depth, as well as training procedures including curriculum, contrastive and self-supervised learning. |
Arrangement | urlib.net > SDLA > Fonds > SIBGRAPI 2021 > Training Deep Networks... |
doc Directory Content | access |
source Directory Content | there are no files |
agreement Directory Content | |
|
4. Conditions of access and use | |
data URL | http://urlib.net/ibi/8JMKD3MGPEW34M/45CUTES |
zipped data URL | http://urlib.net/zip/8JMKD3MGPEW34M/45CUTES |
Language | en |
Target File | 2021_sibgrapi__tutorial_CR.pdf |
User Group | moacirponti@gmail.com |
Visibility | shown |
Update Permission | not transferred |
|
5. Allied materials | |
Mirror Repository | sid.inpe.br/banon/2001/03.30.15.38.24 |
Next Higher Units | 8JMKD3MGPEW34M/45PQ3RS |
Citing Item List | sid.inpe.br/sibgrapi/2021/11.12.11.46 108 sid.inpe.br/banon/2001/03.30.15.38.24 2 |
Host Collection | sid.inpe.br/banon/2001/03.30.15.38 |
|
6. Notes | |
Empty Fields | archivingpolicy archivist area callnumber contenttype copyholder copyright creatorhistory descriptionlevel dissemination edition electronicmailaddress group isbn issn label lineage mark nextedition notes numberofvolumes orcid organization pages parameterlist parentrepositories previousedition previouslowerunit progress project readergroup readpermission resumeid rightsholder schedulinginformation secondarydate secondarykey secondarymark secondarytype serieseditor session shorttitle sponsor subject tertiarymark type url volume |
|