1. Identity statement | |
Reference Type | Conference Paper (Conference Proceedings) |
Site | sibgrapi.sid.inpe.br |
Holder Code | ibi 8JMKD3MGPEW34M/46T9EHH |
Identifier | 8JMKD3MGPEW34M/45CTA2S |
Repository | sid.inpe.br/sibgrapi/2021/09.06.13.34 |
Last Update | 2021:09.06.13.34.59 (UTC) administrator |
Metadata Repository | sid.inpe.br/sibgrapi/2021/09.06.13.34.59 |
Metadata Last Update | 2022:09.10.00.16.17 (UTC) administrator |
Citation Key | MachadoNoguSant:2021:ScClUs |
Title | Scene classification using a combination of aerial and ground images |
Format | On-line |
Year | 2021 |
Access Date | 2025, Jan. 15 |
Number of Files | 1 |
Size | 4071 KiB |
|
2. Context | |
Author | 1 Machado, Gabriel Lucas Silva 2 Nogueira, Keiller 3 dos Santos, Jefersson Alex |
Affiliation | 1 Universidade Federal de Minas Gerais 2 University of Stirling 3 Universidade Federal de Minas Gerais |
Editor | Paiva, Afonso Menotti, David Baranoski, Gladimir V. G. Proença, Hugo Pedro Junior, Antonio Lopes Apolinario Papa, João Paulo Pagliosa, Paulo dos Santos, Thiago Oliveira e Sá, Asla Medeiros da Silveira, Thiago Lopes Trugillo Brazil, Emilio Vital Ponti, Moacir A. Fernandes, Leandro A. F. Avila, Sandra |
e-Mail Address | gabriel.lucas@dcc.ufmg.br |
Conference Name | Conference on Graphics, Patterns and Images, 34 (SIBGRAPI) |
Conference Location | Gramado, RS, Brazil (virtual) |
Date | 18-22 Oct. 2021 |
Publisher | Sociedade Brasileira de Computação |
Publisher City | Porto Alegre |
Book Title | Proceedings |
Tertiary Type | Master's or Doctoral Work |
History (UTC) | 2021-09-06 13:34:59 :: gabriel.lucas@dcc.ufmg.br -> administrator :: 2022-09-10 00:16:17 :: administrator -> :: 2021 |
|
3. Content and structure | |
Is the master or a copy? | is the master |
Content Stage | completed |
Transferable | 1 |
Keywords | deep learning machine learning remote sensing image classification multi-modal machine learning metric learning cross-view matching |
Abstract | lt is undeniable that aerial images can provide useful information for a large variety of tasks, such as disaster relief, and urban planning. But, since these images only see the Earth from one point of view, some applications may benefit from complementary information provided by other perspective views of the scene, such as ground-level images. Despite a large number of public image repositories for both georeferenced photos and aerial images (such as Google Maps, and Street View), there is a lack of public datasets that allow studies that exploit the complementarity of aerial+ground imagery. Given this, we present two new publicly available datasets named AiRound and CV-BrCT. Using both, we tackled the scene classification task in 2 different scenarios. The first one has a fully-paired image set, while the second has missing samples. In both situations, we used deep learning and feature fusion algorithms. To handle missing samples, we proposed a content-based image retrieval framework. |
Arrangement | urlib.net > SDLA > Fonds > SIBGRAPI 2021 > Scene classification using... |
doc Directory Content | access |
source Directory Content | there are no files |
agreement Directory Content | |
|
4. Conditions of access and use | |
data URL | http://urlib.net/ibi/8JMKD3MGPEW34M/45CTA2S |
zipped data URL | http://urlib.net/zip/8JMKD3MGPEW34M/45CTA2S |
Language | en |
Target File | WTD_Gabriel.pdf |
User Group | gabriel.lucas@dcc.ufmg.br |
Visibility | shown |
|
5. Allied materials | |
Mirror Repository | sid.inpe.br/banon/2001/03.30.15.38.24 |
Next Higher Units | 8JMKD3MGPEW34M/45PQ3RS |
Citing Item List | sid.inpe.br/sibgrapi/2021/11.12.11.46 113 sid.inpe.br/banon/2001/03.30.15.38.24 2 |
Host Collection | sid.inpe.br/banon/2001/03.30.15.38 |
|
6. Notes | |
Empty Fields | archivingpolicy archivist area callnumber contenttype copyholder copyright creatorhistory descriptionlevel dissemination documentstage doi edition electronicmailaddress group isbn issn label lineage mark nextedition notes numberofvolumes orcid organization pages parameterlist parentrepositories previousedition previouslowerunit progress project readergroup readpermission resumeid rightsholder schedulinginformation secondarydate secondarykey secondarymark secondarytype serieseditor session shorttitle sponsor subject tertiarymark type url versiontype volume |
|