1. Identity statement | |
Reference Type | Conference Paper (Conference Proceedings) |
Site | sibgrapi.sid.inpe.br |
Holder Code | ibi 8JMKD3MGPEW34M/46T9EHH |
Identifier | 8JMKD3MGPEW34M/45C7QNL |
Repository | sid.inpe.br/sibgrapi/2021/09.02.03.12 |
Last Update | 2021:09.02.03.12.10 (UTC) administrator |
Metadata Repository | sid.inpe.br/sibgrapi/2021/09.02.03.12.10 |
Metadata Last Update | 2022:06.14.00.00.19 (UTC) administrator |
DOI | 10.1109/SIBGRAPI54419.2021.00037 |
Citation Key | VieiraeSilvaFCSTSSSL:2021:DaMuPo |
Title | STN PLAD: A Dataset for Multi-Size Power Line Assets Detection in High-Resolution UAV Images  |
Format | On-line |
Year | 2021 |
Access Date | 2025, Mar. 21 |
Number of Files | 1 |
Size | 5519 KiB |
|
2. Context | |
Author | 1 Vieira e Silva, André Luiz Buarque 2 Felix, Heitor de Castro 3 Chaves, Thiago de Menezes 4 Simões, Francisco Paulo Magalhães 5 Teichrieb, Veronica 6 dos Santos, Michel Mozinho 7 Santiago, Hemir da Cunha 8 Sgotti, Virginia Adélia Cordeiro 9 Lott Neto, Henrique Baptista Duffles Teixeira |
Affiliation | 1 Voxar Labs, Centro de Informática, Universidade Federal de Pernambuco, Brazil 2 Voxar Labs, Centro de Informática, Universidade Federal de Pernambuco, Brazil 3 Voxar Labs, Centro de Informática, Universidade Federal de Pernambuco, Brazil 4 Departamento de Computação, Universidade Federal Rural de Pernambuco, Brazil 5 Voxar Labs, Centro de Informática, Universidade Federal de Pernambuco, Brazil 6 In Forma Software, Brazil 7 In Forma Software, Brazil 8 In Forma Software, Brazil 9 Sistema de Transmissão Nordeste, Brazil |
Editor | Paiva, Afonso Menotti, David Baranoski, Gladimir V. G. Proença, Hugo Pedro Junior, Antonio Lopes Apolinario Papa, João Paulo Pagliosa, Paulo dos Santos, Thiago Oliveira e Sá, Asla Medeiros da Silveira, Thiago Lopes Trugillo Brazil, Emilio Vital Ponti, Moacir A. Fernandes, Leandro A. F. Avila, Sandra |
e-Mail Address | albvs@cin.ufpe.br |
Conference Name | Conference on Graphics, Patterns and Images, 34 (SIBGRAPI) |
Conference Location | Gramado, RS, Brazil (virtual) |
Date | 18-22 Oct. 2021 |
Publisher | IEEE Computer Society |
Publisher City | Los Alamitos |
Book Title | Proceedings |
Tertiary Type | Full Paper |
History (UTC) | 2021-09-02 03:12:10 :: albvs@cin.ufpe.br -> administrator :: 2022-03-02 00:54:15 :: administrator -> menottid@gmail.com :: 2021 2022-03-02 13:40:28 :: menottid@gmail.com -> administrator :: 2021 2022-06-14 00:00:19 :: administrator -> :: 2021 |
|
3. Content and structure | |
Is the master or a copy? | is the master |
Content Stage | completed |
Transferable | 1 |
Version Type | finaldraft |
Keywords | object detection image dataset inspection power lines deep learning computer vision uav |
Abstract | Many power line companies are using UAVs to perform their inspection processes instead of putting their workers at risk by making them climb high voltage power line towers, for instance. A crucial task for the inspection is to detect and classify assets in the power transmission lines. However, public data related to power line assets are scarce, preventing a faster evolution of this area. This work proposes the STN Power Line Assets Dataset, containing high-resolution and real-world images of multiple high-voltage power line components. It has 2,409 annotated objects divided into five classes: transmission tower, insulator, spacer, tower plate, and Stockbridge damper, which vary in size (resolution), orientation, illumination, angulation, and background. This work also presents an evaluation with popular deep object detection methods and MS-PAD, a new pipeline for detecting power line assets in hi-res UAV images. The latter outperforms the other methods achieving 89.2% mAP, showing considerable room for improvement. The STN PLAD dataset is publicly available at https://github.com/andreluizbvs/PLAD. |
Arrangement 1 | urlib.net > SDLA > Fonds > SIBGRAPI 2021 > STN PLAD: A... |
Arrangement 2 | urlib.net > SDLA > Fonds > Full Index > STN PLAD: A... |
doc Directory Content | access |
source Directory Content | there are no files |
agreement Directory Content | |
|
4. Conditions of access and use | |
data URL | http://urlib.net/ibi/8JMKD3MGPEW34M/45C7QNL |
zipped data URL | http://urlib.net/zip/8JMKD3MGPEW34M/45C7QNL |
Language | en |
Target File | 52.pdf |
User Group | albvs@cin.ufpe.br |
Visibility | shown |
Update Permission | not transferred |
|
5. Allied materials | |
Mirror Repository | sid.inpe.br/banon/2001/03.30.15.38.24 |
Next Higher Units | 8JMKD3MGPEW34M/45PQ3RS 8JMKD3MGPEW34M/4742MCS |
Citing Item List | sid.inpe.br/sibgrapi/2021/11.12.11.46 103 sid.inpe.br/sibgrapi/2022/06.10.21.49 4 |
Host Collection | sid.inpe.br/banon/2001/03.30.15.38 |
|
6. Notes | |
Empty Fields | archivingpolicy archivist area callnumber contenttype copyholder copyright creatorhistory descriptionlevel dissemination edition electronicmailaddress group isbn issn label lineage mark nextedition notes numberofvolumes orcid organization pages parameterlist parentrepositories previousedition previouslowerunit progress project readergroup readpermission resumeid rightsholder schedulinginformation secondarydate secondarykey secondarymark secondarytype serieseditor session shorttitle sponsor subject tertiarymark type url volume |
|