Close

1. Identity statement
Reference TypeConference Paper (Conference Proceedings)
Sitesibgrapi.sid.inpe.br
Holder Codeibi 8JMKD3MGPEW34M/46T9EHH
Identifier8JMKD3MGPEW34M/43BFHL8
Repositorysid.inpe.br/sibgrapi/2020/09.30.14.16
Last Update2020:09.30.14.16.57 (UTC) administrator
Metadata Repositorysid.inpe.br/sibgrapi/2020/09.30.14.16.57
Metadata Last Update2022:06.14.00.00.14 (UTC) administrator
DOI10.1109/SIBGRAPI51738.2020.00024
Citation KeySouza:2020:FeLeIm
TitleFeature learning from image markers for object delineation
FormatOn-line
Year2020
Access Date2024, Sep. 18
Number of Files1
Size2832 KiB
2. Context
Authorde Souza, Italos Estilon da Silva
AffiliationUniversity of Campinas
EditorMusse, Soraia Raupp
Cesar Junior, Roberto Marcondes
Pelechano, Nuria
Wang, Zhangyang (Atlas)
e-Mail Addressitalosestilon@gmail.com
Conference NameConference on Graphics, Patterns and Images, 33 (SIBGRAPI)
Conference LocationPorto de Galinhas (virtual)
Date7-10 Nov. 2020
PublisherIEEE Computer Society
Publisher CityLos Alamitos
Book TitleProceedings
Tertiary TypeFull Paper
History (UTC)2020-09-30 14:16:57 :: italosestilon@gmail.com -> administrator ::
2022-06-14 00:00:14 :: administrator -> italosestilon@gmail.com :: 2020
3. Content and structure
Is the master or a copy?is the master
Content Stagecompleted
Transferable1
Version Typefinaldraft
Keywordsobject delineation
convolutional neural networks
feature extraction
AbstractConvolutional neural networks (CNNs) have been used in several computer vision applications. However, most well-succeeded models are usually pre-trained on large labeled datasets. The adaptation of such models to new applications (or datasets) with no label information might be an issue, calling for the construction of a suitable model from scratch. In this paper, we introduce an interactive method to estimate CNN filters from image markers with no need for backpropagation and pre-trained models. The method, named FLIM (feature learning from image markers), exploits the user knowledge about image regions that discriminate objects for marker selection. For a given CNN's architecture and user-drawn markers in an input image, FLIM can estimate the CNN filters by clustering marker pixels in a layer-by-layer fashion -- i.e., the filters of a current layer are estimated from the output of the previous one. We demonstrate the advantages of FLIM for object delineation over alternatives based on a state-of-the-art pre-trained model and the Lab color space. The results indicate the potential of the method towards the construction of explainable CNN models.
Arrangement 1urlib.net > SDLA > Fonds > SIBGRAPI 2020 > Feature learning from...
Arrangement 2urlib.net > SDLA > Fonds > Full Index > Feature learning from...
doc Directory Contentaccess
source Directory Contentthere are no files
agreement Directory Content
agreement.html 30/09/2020 11:16 1.2 KiB 
4. Conditions of access and use
data URLhttp://urlib.net/ibi/8JMKD3MGPEW34M/43BFHL8
zipped data URLhttp://urlib.net/zip/8JMKD3MGPEW34M/43BFHL8
Languageen
Target File76.pdf
User Groupitalosestilon@gmail.com
Visibilityshown
Update Permissionnot transferred
5. Allied materials
Mirror Repositorysid.inpe.br/banon/2001/03.30.15.38.24
Next Higher Units8JMKD3MGPEW34M/43G4L9S
8JMKD3MGPEW34M/4742MCS
Citing Item Listsid.inpe.br/sibgrapi/2020/10.28.20.46 25
sid.inpe.br/sibgrapi/2022/06.10.21.49 1
Host Collectionsid.inpe.br/banon/2001/03.30.15.38
6. Notes
Empty Fieldsarchivingpolicy archivist area callnumber contenttype copyholder copyright creatorhistory descriptionlevel dissemination edition electronicmailaddress group isbn issn label lineage mark nextedition notes numberofvolumes orcid organization pages parameterlist parentrepositories previousedition previouslowerunit progress project readergroup readpermission resumeid rightsholder schedulinginformation secondarydate secondarykey secondarymark secondarytype serieseditor session shorttitle sponsor subject tertiarymark type url volume
7. Description control
e-Mail (login)italosestilon@gmail.com
update 


Close