1. Identity statement | |
Reference Type | Conference Paper (Conference Proceedings) |
Site | sibgrapi.sid.inpe.br |
Holder Code | ibi 8JMKD3MGPEW34M/46T9EHH |
Identifier | 8JMKD3MGPEW34M/43BDF3B |
Repository | sid.inpe.br/sibgrapi/2020/09.30.02.48 |
Last Update | 2020:09.30.02.48.17 (UTC) administrator |
Metadata Repository | sid.inpe.br/sibgrapi/2020/09.30.02.48.17 |
Metadata Last Update | 2022:06.14.00.00.14 (UTC) administrator |
DOI | 10.1109/SIBGRAPI51738.2020.00035 |
Citation Key | AvelarTavSilJunLam:2020:SuImCl |
Title | Superpixel Image Classification with Graph Attention Networks |
Format | On-line |
Year | 2020 |
Access Date | 2024, Sep. 19 |
Number of Files | 1 |
Size | 1548 KiB |
|
2. Context | |
Author | 1 Avelar, Pedro Henrique da Costa 2 Tavares, Anderson Rocha 3 Silveira, Thiago Lopes Trugillo da 4 Jung, Cláudio Rosito 5 Lamb, Luís da Cunha |
Affiliation | 1 Federal University of Rio Grande do Sul 2 Federal University of Rio Grande do Sul 3 University of Rio Grande 4 Federal University of Rio Grande do Sul 5 Federal University of Rio Grande do Sul |
Editor | Musse, Soraia Raupp Cesar Junior, Roberto Marcondes Pelechano, Nuria Wang, Zhangyang (Atlas) |
e-Mail Address | phcavelar@inf.ufrgs.br |
Conference Name | Conference on Graphics, Patterns and Images, 33 (SIBGRAPI) |
Conference Location | Porto de Galinhas (virtual) |
Date | 7-10 Nov. 2020 |
Publisher | IEEE Computer Society |
Publisher City | Los Alamitos |
Book Title | Proceedings |
Tertiary Type | Full Paper |
History (UTC) | 2020-09-30 02:48:17 :: phcavelar@inf.ufrgs.br -> administrator :: 2022-06-14 00:00:14 :: administrator -> phcavelar@inf.ufrgs.br :: 2020 |
|
3. Content and structure | |
Is the master or a copy? | is the master |
Content Stage | completed |
Transferable | 1 |
Version Type | finaldraft |
Keywords | superpixel graph attention networks graph neural networks |
Abstract | This paper presents a methodology for image classification using Graph Neural Network (GNN) models. We transform the input images into region adjacency graphs (RAGs), in which regions are superpixels and edges connect neighboring superpixels. Our experiments suggest that Graph Attention Networks (GATs), which combine graph convolutions with self-attention mechanisms, outperforms other GNN models. Although raw image classifiers perform better than GATs due to information loss during the RAG generation, our methodology opens an interesting avenue of research on deep learning beyond rectangular-gridded images, such as 360-degree field of view panoramas. Traditional convolutional kernels of current state-of-the-art methods cannot handle panoramas, whereas the adapted superpixel algorithms and the resulting region adjacency graphs can naturally feed a GNN, without topology issues. |
Arrangement 1 | urlib.net > SDLA > Fonds > SIBGRAPI 2020 > Superpixel Image Classification... |
Arrangement 2 | urlib.net > SDLA > Fonds > Full Index > Superpixel Image Classification... |
doc Directory Content | access |
source Directory Content | there are no files |
agreement Directory Content | |
|
4. Conditions of access and use | |
data URL | http://urlib.net/ibi/8JMKD3MGPEW34M/43BDF3B |
zipped data URL | http://urlib.net/zip/8JMKD3MGPEW34M/43BDF3B |
Language | en |
Target File | PID6630943.pdf |
User Group | phcavelar@inf.ufrgs.br |
Visibility | shown |
Update Permission | not transferred |
|
5. Allied materials | |
Mirror Repository | sid.inpe.br/banon/2001/03.30.15.38.24 |
Next Higher Units | 8JMKD3MGPEW34M/43G4L9S 8JMKD3MGPEW34M/4742MCS |
Citing Item List | sid.inpe.br/sibgrapi/2020/10.28.20.46 29 sid.inpe.br/sibgrapi/2022/06.10.21.49 5 |
Host Collection | sid.inpe.br/banon/2001/03.30.15.38 |
|
6. Notes | |
Empty Fields | archivingpolicy archivist area callnumber contenttype copyholder copyright creatorhistory descriptionlevel dissemination edition electronicmailaddress group isbn issn label lineage mark nextedition notes numberofvolumes orcid organization pages parameterlist parentrepositories previousedition previouslowerunit progress project readergroup readpermission resumeid rightsholder schedulinginformation secondarydate secondarykey secondarymark secondarytype serieseditor session shorttitle sponsor subject tertiarymark type url volume |
|
7. Description control | |
e-Mail (login) | phcavelar@inf.ufrgs.br |
update | |
|