Close

1. Identity statement
Reference TypeConference Paper (Conference Proceedings)
Sitesibgrapi.sid.inpe.br
Holder Codeibi 8JMKD3MGPEW34M/46T9EHH
Identifier8JMKD3MGPEW34M/43BD4BE
Repositorysid.inpe.br/sibgrapi/2020/09.30.00.38
Last Update2020:09.30.02.06.02 (UTC) administrator
Metadata Repositorysid.inpe.br/sibgrapi/2020/09.30.00.38.53
Metadata Last Update2022:06.14.00.00.13 (UTC) administrator
DOI10.1109/SIBGRAPI51738.2020.00038
Citation KeyCerpaSalasMezaLoaiBarb:2020:TrSyIm
TitleTraining with synthetic images for object detection and segmentation in real machinery images
FormatOn-line
Year2020
Access Date2024, Sep. 07
Number of Files1
Size4696 KiB
2. Context
Author1 Cerpa Salas, Alonso Jesús
2 Meza Lovón, Graciela Lecireth
3 Loaiza Fernández, Manuel Eduardo
4 Barbosa Raposo, Alberto
Affiliation1 Universidad Católica San Pablo
2 Universidad Católica San Pablo
3 Universidad Católica San Pablo
4 Pontifical Catholic University of Rio de Janeiro
EditorMusse, Soraia Raupp
Cesar Junior, Roberto Marcondes
Pelechano, Nuria
Wang, Zhangyang (Atlas)
e-Mail Addressalonso.cerpa@ucsp.edu.pe
Conference NameConference on Graphics, Patterns and Images, 33 (SIBGRAPI)
Conference LocationPorto de Galinhas (virtual)
Date7-10 Nov. 2020
PublisherIEEE Computer Society
Publisher CityLos Alamitos
Book TitleProceedings
Tertiary TypeFull Paper
History (UTC)2020-09-30 02:06:04 :: alonso.cerpa@ucsp.edu.pe -> administrator :: 2020
2022-06-14 00:00:13 :: administrator -> alonso.cerpa@ucsp.edu.pe :: 2020
3. Content and structure
Is the master or a copy?is the master
Content Stagecompleted
Transferable1
Version Typefinaldraft
Keywordssynthetic data generation
object detection
object segmentation
deep learning
AbstractOver the last years, Convolutional Neural Networks have been extensively used for solving problems such as image classification, object segmentation, and object detection. However, deep neural networks require a great deal of data correctly labeled in order to perform properly. Generally, generation and labeling processes are carried out by recruiting people to label the data manually. To overcome this problem, many researchers have studied the use of data generated automatically by a renderer. To the best of our knowledge, most of this research was conducted for general-purpose domains but not for specific ones. This paper presents a methodology to generate synthetic data and train a deep learning model for the segmentation of pieces of machinery. For doing so, we built a computer graphics synthetic 3D scenery with the 3D models of real pieces of machinery for rendering and capturing virtual photos from this 3D scenery. Subsequently, we train a Mask R-CNN using the pre-trained weights of COCO dataset. Finally, we obtained our best averages of 85.7% mAP for object detection and 84.8% mAP for object segmentation, over our real test dataset and training only with synthetic images filtered with Gaussian Blur.
Arrangement 1urlib.net > SDLA > Fonds > SIBGRAPI 2020 > Training with synthetic...
Arrangement 2urlib.net > SDLA > Fonds > Full Index > Training with synthetic...
doc Directory Contentaccess
source Directory Content
paper_sibgrapi_id54.pdf 29/09/2020 21:38 4.6 MiB
PID6630889.pdf 29/09/2020 22:50 4.6 MiB
agreement Directory Content
agreement.html 29/09/2020 21:38 1.2 KiB 
4. Conditions of access and use
data URLhttp://sibgrapi.sid.inpe.br/ibi/8JMKD3MGPEW34M/43BD4BE
zipped data URLhttp://sibgrapi.sid.inpe.br/zip/8JMKD3MGPEW34M/43BD4BE
Languageen
Target FilePID6630889.pdf
User Groupalonso.cerpa@ucsp.edu.pe
Visibilityshown
Update Permissionnot transferred
5. Allied materials
Mirror Repositorysid.inpe.br/banon/2001/03.30.15.38.24
Next Higher Units8JMKD3MGPEW34M/43G4L9S
8JMKD3MGPEW34M/4742MCS
Citing Item Listsid.inpe.br/sibgrapi/2020/10.28.20.46 23
sid.inpe.br/sibgrapi/2022/06.10.21.49 2
Host Collectionsid.inpe.br/banon/2001/03.30.15.38
6. Notes
Empty Fieldsarchivingpolicy archivist area callnumber contenttype copyholder copyright creatorhistory descriptionlevel dissemination edition electronicmailaddress group isbn issn label lineage mark nextedition notes numberofvolumes orcid organization pages parameterlist parentrepositories previousedition previouslowerunit progress project readergroup readpermission resumeid rightsholder schedulinginformation secondarydate secondarykey secondarymark secondarytype serieseditor session shorttitle sponsor subject tertiarymark type url volume
7. Description control
e-Mail (login)alonso.cerpa@ucsp.edu.pe
update 


Close