<?xml version="1.0" encoding="ISO-8859-1"?>
<metadatalist>
	<metadata ReferenceType="Conference Proceedings">
		<identifier>8JMKD3MGPEW34M/43BCTKE</identifier>
		<repository>sid.inpe.br/sibgrapi/2020/09.29.23.53</repository>
		<metadatarepository>sid.inpe.br/sibgrapi/2020/09.29.23.53.31</metadatarepository>
		<site>sibgrapi.sid.inpe.br 802</site>
		<citationkey>GarciaZheTaoLiuMan:2020:CaPiHu</citationkey>
		<author>Garcia, Danson Evan,</author>
		<author>Zheng, Kai Wen,</author>
		<author>Tao, Yi,</author>
		<author>Liu, Yi,</author>
		<author>Mann, Steve,</author>
		<affiliation>University of Toronto</affiliation>
		<affiliation>University of Toronto</affiliation>
		<affiliation>University of Toronto</affiliation>
		<affiliation>University of Toronto</affiliation>
		<affiliation>University of Toronto</affiliation>
		<title>Capturing Pictures from Human Vision Using SSVEP and Lock-in Amplifier</title>
		<conferencename>Conference on Graphics, Patterns and Images, 33 (SIBGRAPI)</conferencename>
		<year>2020</year>
		<editor>Musse, Soraia Raupp,</editor>
		<editor>Cesar Junior, Roberto Marcondes,</editor>
		<editor>Pelechano, Nuria,</editor>
		<editor>Wang, Zhangyang (Atlas),</editor>
		<booktitle>Proceedings</booktitle>
		<date>Nov. 7-10, 2020</date>
		<publisheraddress>Los Alamitos</publisheraddress>
		<publisher>IEEE Computer Society</publisher>
		<conferencelocation>Virtual</conferencelocation>
		<keywords>Signal processing, visual field reconstruction, brain-computer interfaces (BCI), steady-state visually evoked potential (SSVEP), lock-in amplifier, pattern recognition.</keywords>
		<abstract>We present a novel way of using one's eye to capture an image of what it "sees" through the use of steady-state visually-evoked potentials (SSVEP). Existing methods leveraging response patterns for SSVEP visual image reconstruction show lossy reconstruction and have a lengthy scanning process. With our signal acquisition procedure, data collection requirements are significantly decreased while still improving the signal clarity. The data for image reconstruction was collected from the Oz positioned electrode using a low-cost, wearable electroencephalography (EEG) device. For image reconstruction, software-defined lock-in amplifier (LIA) and discrete Fourier transform (DFT) signal processing methods are analyzed.</abstract>
		<language>en</language>
		<tertiarytype>Full Paper</tertiarytype>
		<format>On-line</format>
		<size>4548 KiB</size>
		<numberoffiles>1</numberoffiles>
		<targetfile>PID6607063.pdf</targetfile>
		<lastupdate>2020:10.01.15.10.24 sid.inpe.br/banon/2001/03.30.15.38 danson.garcia@mail.utoronto.ca</lastupdate>
		<metadatalastupdate>2020:10.01.15.10.24 sid.inpe.br/banon/2001/03.30.15.38 danson.garcia@mail.utoronto.ca {D 2020}</metadatalastupdate>
		<mirrorrepository>sid.inpe.br/banon/2001/03.30.15.38.24</mirrorrepository>
		<e-mailaddress>danson.garcia@mail.utoronto.ca</e-mailaddress>
		<username>danson.garcia@mail.utoronto.ca</username>
		<usergroup>danson.garcia@mail.utoronto.ca</usergroup>
		<visibility>shown</visibility>
		<transferableflag>1</transferableflag>
		<hostcollection>sid.inpe.br/banon/2001/03.30.15.38</hostcollection>
		<contenttype>External Contribution</contenttype>
		<documentstage>not transferred</documentstage>
		<agreement>agreement.html .htaccess .htaccess2</agreement>
		<lasthostcollection>sid.inpe.br/banon/2001/03.30.15.38</lasthostcollection>
		<url>http://sibgrapi.sid.inpe.br/rep-/sid.inpe.br/sibgrapi/2020/09.29.23.53</url>
	</metadata>
</metadatalist>