1. Identity statement | |
Reference Type | Conference Paper (Conference Proceedings) |
Site | sibgrapi.sid.inpe.br |
Holder Code | ibi 8JMKD3MGPEW34M/46T9EHH |
Identifier | 8JMKD3MGPEW34M/43B8HEB |
Repository | sid.inpe.br/sibgrapi/2020/09.28.23.57 |
Last Update | 2020:09.28.23.57.06 (UTC) administrator |
Metadata Repository | sid.inpe.br/sibgrapi/2020/09.28.23.57.06 |
Metadata Last Update | 2022:06.14.00.00.10 (UTC) administrator |
DOI | 10.1109/SIBGRAPI51738.2020.00039 |
Citation Key | FreitasCordMaca:2020:FoSeCl |
Title | MyFood: A Food Segmentation and Classification System to Aid Nutritional Monitoring |
Format | On-line |
Year | 2020 |
Access Date | 2024, Sep. 17 |
Number of Files | 1 |
Size | 6600 KiB |
|
2. Context | |
Author | 1 Freitas, Charles N. C. 2 Cordeiro, Filipe R. 3 Macario, Valmir |
Affiliation | 1 Universidade Federal Rural de Pernambuco 2 Universidade Federal Rural de Pernambuco 3 Universidade Federal Rural de Pernambuco |
Editor | Musse, Soraia Raupp Cesar Junior, Roberto Marcondes Pelechano, Nuria Wang, Zhangyang (Atlas) |
e-Mail Address | filipe.rolim@ufrpe.br |
Conference Name | Conference on Graphics, Patterns and Images, 33 (SIBGRAPI) |
Conference Location | Porto de Galinhas (virtual) |
Date | 7-10 Nov. 2020 |
Publisher | IEEE Computer Society |
Publisher City | Los Alamitos |
Book Title | Proceedings |
Tertiary Type | Full Paper |
History (UTC) | 2020-09-28 23:57:06 :: filipe.rolim@ufrpe.br -> administrator :: 2022-06-14 00:00:10 :: administrator -> filipe.rolim@ufrpe.br :: 2020 |
|
3. Content and structure | |
Is the master or a copy? | is the master |
Content Stage | completed |
Transferable | 1 |
Version Type | finaldraft |
Keywords | nutrition food segmentation |
Abstract | The absence of food monitoring has contributed significantly to the increase in the populations weight. Due to the lack of time and busy routines, most people do not control and record what is consumed in their diet. Some solutions have been proposed in computer vision to recognize food images, but few are specialized in nutritional monitoring. This work presents the development of an intelligent system that classifies and segments food presented in images to help the automatic monitoring of user diet and nutritional intake. This work shows a comparative study of state-of-the-art methods for image classification and segmentation, applied to food recognition. In our methodology, we compare the FCN, ENet, SegNet, DeepLabV3+, and Mask RCNN algorithms. We build a dataset composed of the most consumed Brazilian food types, containing nine classes and a total of 1250 images. The models were evaluated using the following metrics: Intersection over Union, Sensitivity, Specificity, Balanced Precision, and Positive Predefined Value. We also propose a system integrated into a mobile application that automatically recognizes and estimates the nutrients in a meal, assisting people with better nutritional monitoring. The proposed solution showed better results than the existing ones in the market. The dataset is publicly available at the following link http://doi.org/10.5281/zenodo.4041488. |
doc Directory Content | access |
source Directory Content | there are no files |
agreement Directory Content | |
|
4. Conditions of access and use | |
data URL | http://urlib.net/ibi/8JMKD3MGPEW34M/43B8HEB |
zipped data URL | http://urlib.net/zip/8JMKD3MGPEW34M/43B8HEB |
Language | en |
Target File | Paper_ID_63_camara_ready_version_v2.pdf |
User Group | filipe.rolim@ufrpe.br |
Visibility | shown |
Update Permission | not transferred |
|
5. Allied materials | |
Mirror Repository | sid.inpe.br/banon/2001/03.30.15.38.24 |
Next Higher Units | 8JMKD3MGPEW34M/43G4L9S 8JMKD3MGPEW34M/4742MCS |
Citing Item List | sid.inpe.br/sibgrapi/2020/10.28.20.46 25 sid.inpe.br/sibgrapi/2022/06.10.21.49 2 |
Host Collection | sid.inpe.br/banon/2001/03.30.15.38 |
|
6. Notes | |
Empty Fields | archivingpolicy archivist area callnumber contenttype copyholder copyright creatorhistory descriptionlevel dissemination edition electronicmailaddress group isbn issn label lineage mark nextedition notes numberofvolumes orcid organization pages parameterlist parentrepositories previousedition previouslowerunit progress project readergroup readpermission resumeid rightsholder schedulinginformation secondarydate secondarykey secondarymark secondarytype serieseditor session shorttitle sponsor subject tertiarymark type url volume |
|
7. Description control | |
e-Mail (login) | filipe.rolim@ufrpe.br |
update | |
|