<?xml version="1.0" encoding="ISO-8859-1"?>
<metadatalist>
	<metadata ReferenceType="Conference Proceedings">
		<site>sibgrapi.sid.inpe.br 802</site>
		<identifier>8JMKD3MGPAW/3RRA45S</identifier>
		<repository>sid.inpe.br/sibgrapi/2018/09.16.01.52</repository>
		<lastupdate>2018:09.16.01.52.35 sid.inpe.br/banon/2001/03.30.15.38 administrator</lastupdate>
		<metadatarepository>sid.inpe.br/sibgrapi/2018/09.16.01.52.35</metadatarepository>
		<metadatalastupdate>2020:02.19.03.10.45 sid.inpe.br/banon/2001/03.30.15.38 administrator {D 2018}</metadatalastupdate>
		<citationkey>NazareCostMellPont:2018:EmAnUs</citationkey>
		<title>Color quantization in transfer learning and noisy scenarios: an empirical analysis using convolutional networks</title>
		<format>On-line</format>
		<year>2018</year>
		<date>Oct. 29 - Nov. 1, 2018</date>
		<numberoffiles>1</numberoffiles>
		<size>395 KiB</size>
		<author>Nazare, Tiago S.,</author>
		<author>Costa, Gabriel B. Paranhos da,</author>
		<author>Mello, Rodrigo F. de,</author>
		<author>Ponti, Moacir A.,</author>
		<affiliation>University of São Paulo</affiliation>
		<affiliation>University of São Paulo</affiliation>
		<affiliation>University of São Paulo</affiliation>
		<affiliation>University of São Paulo</affiliation>
		<editor>Ross, Arun,</editor>
		<editor>Gastal, Eduardo S. L.,</editor>
		<editor>Jorge, Joaquim A.,</editor>
		<editor>Queiroz, Ricardo L. de,</editor>
		<editor>Minetto, Rodrigo,</editor>
		<editor>Sarkar, Sudeep,</editor>
		<editor>Papa, João Paulo,</editor>
		<editor>Oliveira, Manuel M.,</editor>
		<editor>Arbeláez, Pablo,</editor>
		<editor>Mery, Domingo,</editor>
		<editor>Oliveira, Maria Cristina Ferreira de,</editor>
		<editor>Spina, Thiago Vallin,</editor>
		<editor>Mendes, Caroline Mazetto,</editor>
		<editor>Costa, Henrique Sérgio Gutierrez,</editor>
		<editor>Mejail, Marta Estela,</editor>
		<editor>Geus, Klaus de,</editor>
		<editor>Scheer, Sergio,</editor>
		<e-mailaddress>tiagosn@usp.br</e-mailaddress>
		<conferencename>Conference on Graphics, Patterns and Images, 31 (SIBGRAPI)</conferencename>
		<conferencelocation>Foz do Iguaçu, PR, Brazil</conferencelocation>
		<booktitle>Proceedings</booktitle>
		<publisher>IEEE Computer Society</publisher>
		<publisheraddress>Los Alamitos</publisheraddress>
		<documentstage>not transferred</documentstage>
		<transferableflag>1</transferableflag>
		<contenttype>External Contribution</contenttype>
		<tertiarytype>Full Paper</tertiarytype>
		<keywords>Deep learning, transfer learning, convolutional neural networks, computer vision.</keywords>
		<abstract>Transfer learning is seen as one of the most promising areas of machine learning. Lately, features from pre-trained models have been used to achieve state-of-the-art results in several machine vision problems. Those models are usually employed when the problem of interest does not have enough supervised examples to support the network training from scratch. Most applications use networks pre-trained on noise-free RGB image datasets, what is observed even when the target domain counts on grayscale images or when data is degraded by noise. In this paper, we evaluate the use of Convolutional Neural Networks (CNNs) on such transfer learning scenarios and the impact of using RGB trained networks on grayscale image tasks. Our results confirm that the use of networks trained using colored images on grayscale tasks hinders the overall performance when compared to a similar network trained on a quantized version of the original dataset. Results also show that higher quantization levels (resulting in less colors) increase the robustness of CNN features in the presence of noise.</abstract>
		<language>en</language>
		<targetfile>SIB_2018.pdf</targetfile>
		<usergroup>tiagosn@usp.br</usergroup>
		<visibility>shown</visibility>
		<mirrorrepository>sid.inpe.br/banon/2001/03.30.15.38.24</mirrorrepository>
		<nexthigherunit>8JMKD3MGPAW/3RPADUS</nexthigherunit>
		<hostcollection>sid.inpe.br/banon/2001/03.30.15.38</hostcollection>
		<agreement>agreement.html .htaccess .htaccess2</agreement>
		<lasthostcollection>sid.inpe.br/banon/2001/03.30.15.38</lasthostcollection>
		<url>http://sibgrapi.sid.inpe.br/rep-/sid.inpe.br/sibgrapi/2018/09.16.01.52</url>
	</metadata>
</metadatalist>