1. Identity statement | |
Reference Type | Conference Paper (Conference Proceedings) |
Site | sibgrapi.sid.inpe.br |
Holder Code | ibi 8JMKD3MGPEW34M/46T9EHH |
Identifier | 8JMKD3MGPAW/3PK5D5L |
Repository | sid.inpe.br/sibgrapi/2017/09.10.23.00 |
Last Update | 2017:09.10.23.00.26 (UTC) perhark@ime.usp.br |
Metadata Repository | sid.inpe.br/sibgrapi/2017/09.10.23.00.26 |
Metadata Last Update | 2022:05.18.22.18.26 (UTC) administrator |
Citation Key | Murrugarra-LLerenaHira:2017:GaImCl |
Title | Galaxy image classification |
Format | On-line |
Year | 2017 |
Access Date | 2024, Oct. 15 |
Number of Files | 1 |
Size | 476 KiB |
|
2. Context | |
Author | 1 Murrugarra-LLerena, Joseph Hans 2 Hirata, Nina Sumiko Tomita |
Affiliation | 1 Institute of Mathematics and Statistics of the University of São Paulo, São Paulo, Brazil 2 Institute of Mathematics and Statistics of the University of São Paulo, São Paulo, Brazil |
Editor | Torchelsen, Rafael Piccin Nascimento, Erickson Rangel do Panozzo, Daniele Liu, Zicheng Farias, Mylène Viera, Thales Sacht, Leonardo Ferreira, Nivan Comba, João Luiz Dihl Hirata, Nina Schiavon Porto, Marcelo Vital, Creto Pagot, Christian Azambuja Petronetto, Fabiano Clua, Esteban Cardeal, Flávio |
e-Mail Address | perhark@ime.usp.br |
Conference Name | Conference on Graphics, Patterns and Images, 30 (SIBGRAPI) |
Conference Location | Niterói, RJ, Brazil |
Date | 17-20 Oct. 2017 |
Publisher | Sociedade Brasileira de Computação |
Publisher City | Porto Alegre |
Book Title | Proceedings |
Tertiary Type | Work in Progress |
History (UTC) | 2017-09-10 23:00:26 :: perhark@ime.usp.br -> administrator :: 2022-05-18 22:18:26 :: administrator -> :: 2017 |
|
3. Content and structure | |
Is the master or a copy? | is the master |
Content Stage | completed |
Transferable | 1 |
Keywords | galaxy classification deep learning convolutional neural networks |
Abstract | Over the years, different methods based either on morphological features or on expert knowledge have been proposed to classify galaxies. The amount of data to be processed in large scale surveys poses a new challenge for the classification. In this preliminary study, we investigate machine learning methods for galaxy image classification. Specifically, we evaluate convolutional neural networks as tools to be used in the classification process. Different ways of using convolutional neural networks has been experimented to classify galaxies as elliptical or spiral. Classification accuracy around 90-91% for the Sloan Digital Sky Survey (SDSS) galaxy images has been achieved. |
Arrangement | urlib.net > SDLA > Fonds > SIBGRAPI 2017 > Galaxy image classification |
doc Directory Content | access |
source Directory Content | there are no files |
agreement Directory Content | |
|
4. Conditions of access and use | |
data URL | http://urlib.net/ibi/8JMKD3MGPAW/3PK5D5L |
zipped data URL | http://urlib.net/zip/8JMKD3MGPAW/3PK5D5L |
Language | en |
Target File | article.pdf |
User Group | perhark@ime.usp.br |
Visibility | shown |
Update Permission | not transferred |
|
5. Allied materials | |
Mirror Repository | sid.inpe.br/banon/2001/03.30.15.38.24 |
Next Higher Units | 8JMKD3MGPAW/3PKCC58 |
Citing Item List | sid.inpe.br/sibgrapi/2017/09.12.13.04 35 sid.inpe.br/banon/2001/03.30.15.38.24 3 |
Host Collection | sid.inpe.br/banon/2001/03.30.15.38 |
|
6. Notes | |
Empty Fields | archivingpolicy archivist area callnumber contenttype copyholder copyright creatorhistory descriptionlevel dissemination doi edition electronicmailaddress group isbn issn label lineage mark nextedition notes numberofvolumes orcid organization pages parameterlist parentrepositories previousedition previouslowerunit progress project readergroup readpermission resumeid rightsholder schedulinginformation secondarydate secondarykey secondarymark secondarytype serieseditor session shorttitle sponsor subject tertiarymark type url versiontype volume |
|