1. Identity statement | |
Reference Type | Conference Paper (Conference Proceedings) |
Site | sibgrapi.sid.inpe.br |
Holder Code | ibi 8JMKD3MGPEW34M/46T9EHH |
Identifier | 8JMKD3MGPAW/3PJSQNL |
Repository | sid.inpe.br/sibgrapi/2017/09.09.16.33 |
Last Update | 2017:09.09.16.33.41 (UTC) administrator |
Metadata Repository | sid.inpe.br/sibgrapi/2017/09.09.16.33.41 |
Metadata Last Update | 2022:05.18.22.18.25 (UTC) administrator |
Citation Key | CavalinOliv:2017:ReTeCl |
Title | A Review of Texture Classification Methods and Databases |
Format | On-line |
Year | 2017 |
Access Date | 2024, Oct. 08 |
Number of Files | 1 |
Size | 1573 KiB |
|
2. Context | |
Author | 1 Cavalin, Paulo 2 Oliveira, Luiz S. |
Affiliation | 1 IBM Research 2 Universidade Federal do Paraná - UFPR |
Editor | Torchelsen, Rafael Piccin Nascimento, Erickson Rangel do Panozzo, Daniele Liu, Zicheng Farias, Mylène Viera, Thales Sacht, Leonardo Ferreira, Nivan Comba, João Luiz Dihl Hirata, Nina Schiavon Porto, Marcelo Vital, Creto Pagot, Christian Azambuja Petronetto, Fabiano Clua, Esteban Cardeal, Flávio |
e-Mail Address | pcavalin@br.ibm.com |
Conference Name | Conference on Graphics, Patterns and Images, 30 (SIBGRAPI) |
Conference Location | Niterói, RJ, Brazil |
Date | 17-20 Oct. 2017 |
Publisher | Sociedade Brasileira de Computação |
Publisher City | Porto Alegre |
Book Title | Proceedings |
Tertiary Type | Tutorial |
History (UTC) | 2017-09-09 16:33:41 :: pcavalin@br.ibm.com -> administrator :: 2022-05-18 22:18:25 :: administrator -> :: 2017 |
|
3. Content and structure | |
Is the master or a copy? | is the master |
Content Stage | completed |
Transferable | 1 |
Keywords | Texture recognition Image recognition Deep Learn- ing |
Abstract | In this survey, we present a review of methods and resources for texture recognition, presenting the most common techniques that have been used in the recent decades, along with current tendencies. That said, this paper covers since the most traditional approaches, for instance texture descriptors such as gray-level co-occurence matrices (GLCM) and Local Binary Patterns (LBP), to more recent approaches such as Convolutional Neural Networks (CNN) and multi-scale patch-based recognition based on encoding approaches such as Fisher Vectors. In addition, we point out relevant references for benchmark datasets, which can help the reader develop and evaluate new methods. |
Arrangement | urlib.net > SDLA > Fonds > SIBGRAPI 2017 > A Review of... |
doc Directory Content | access |
source Directory Content | there are no files |
agreement Directory Content | |
|
4. Conditions of access and use | |
data URL | http://urlib.net/ibi/8JMKD3MGPAW/3PJSQNL |
zipped data URL | http://urlib.net/zip/8JMKD3MGPAW/3PJSQNL |
Language | en |
Target File | sibgrapi_paper2017.pdf |
User Group | pcavalin@br.ibm.com |
Visibility | shown |
Update Permission | not transferred |
|
5. Allied materials | |
Mirror Repository | sid.inpe.br/banon/2001/03.30.15.38.24 |
Next Higher Units | 8JMKD3MGPAW/3PKCC58 |
Citing Item List | sid.inpe.br/sibgrapi/2017/09.12.13.04 42 sid.inpe.br/banon/2001/03.30.15.38.24 1 |
Host Collection | sid.inpe.br/banon/2001/03.30.15.38 |
|
6. Notes | |
Empty Fields | archivingpolicy archivist area callnumber contenttype copyholder copyright creatorhistory descriptionlevel dissemination doi edition electronicmailaddress group isbn issn label lineage mark nextedition notes numberofvolumes orcid organization pages parameterlist parentrepositories previousedition previouslowerunit progress project readergroup readpermission resumeid rightsholder schedulinginformation secondarydate secondarykey secondarymark secondarytype serieseditor session shorttitle sponsor subject tertiarymark type url versiontype volume |
|