<?xml version="1.0" encoding="ISO-8859-1"?>
<metadatalist>
	<metadata ReferenceType="Conference Proceedings">
		<site>sibgrapi.sid.inpe.br 802</site>
		<identifier>8JMKD3MGPAW/3PFRG3B</identifier>
		<repository>sid.inpe.br/sibgrapi/2017/08.21.22.27</repository>
		<lastupdate>2017:08.21.22.27.34 sid.inpe.br/banon/2001/03.30.15.38 administrator</lastupdate>
		<metadatarepository>sid.inpe.br/sibgrapi/2017/08.21.22.27.34</metadatarepository>
		<metadatalastupdate>2020:02.19.02.01.36 sid.inpe.br/banon/2001/03.30.15.38 administrator {D 2017}</metadatalastupdate>
		<citationkey>CastañedaLeonVech:2017:MuSeHi</citationkey>
		<title>Multi-Object Segmentation by Hierarchical Layered Oriented Image Foresting Transform</title>
		<format>On-line</format>
		<year>2017</year>
		<numberoffiles>1</numberoffiles>
		<size>2824 KiB</size>
		<author>Castañeda Leon, Leissi Margarita,</author>
		<author>Vechiatto de Miranda, Paulo André,</author>
		<affiliation>Institute of Mathematics and Statistics, University of São Paulo</affiliation>
		<affiliation>Institute of Mathematics and Statistics, University of São Paulo</affiliation>
		<editor>Torchelsen, Rafael Piccin,</editor>
		<editor>Nascimento, Erickson Rangel do,</editor>
		<editor>Panozzo, Daniele,</editor>
		<editor>Liu, Zicheng,</editor>
		<editor>Farias, Mylène,</editor>
		<editor>Viera, Thales,</editor>
		<editor>Sacht, Leonardo,</editor>
		<editor>Ferreira, Nivan,</editor>
		<editor>Comba, João Luiz Dihl,</editor>
		<editor>Hirata, Nina,</editor>
		<editor>Schiavon Porto, Marcelo,</editor>
		<editor>Vital, Creto,</editor>
		<editor>Pagot, Christian Azambuja,</editor>
		<editor>Petronetto, Fabiano,</editor>
		<editor>Clua, Esteban,</editor>
		<editor>Cardeal, Flávio,</editor>
		<e-mailaddress>leissicl@ime.usp.br</e-mailaddress>
		<conferencename>Conference on Graphics, Patterns and Images, 30 (SIBGRAPI)</conferencename>
		<conferencelocation>Niterói, RJ</conferencelocation>
		<date>Oct. 17-20, 2017</date>
		<booktitle>Proceedings</booktitle>
		<publisher>IEEE Computer Society</publisher>
		<publisheraddress>Los Alamitos</publisheraddress>
		<tertiarytype>Full Paper</tertiarytype>
		<transferableflag>1</transferableflag>
		<contenttype>External Contribution</contenttype>
		<keywords>Multi-object segmentation, Image Foresting Transform.</keywords>
		<abstract>This paper introduces a new method for multi-object segmentation in images, named as Hierarchical Layered Oriented Image Foresting Transform (HLOIFT). As input, we have an image, a tree of relations between image objects, with the individual high-level priors of each object coded in its nodes, and the objects' seeds.  Each node of the tree defines a weighted digraph, named as layer. The layers are then integrated by the geometric interactions, such as inclusion and exclusion relations, extracted from the given tree into a unique weighted digraph, named as hierarchical layered digraph. A single energy optimization is performed in the hierarchical layered weighted digraph by Oriented Image  Foresting Transform (OIFT) leading to globally optimal results satisfying  all the high-level priors. We evaluate our framework in the multi-object segmentation of medical and synthetic images, obtaining results comparable to the state-of-the-art methods, but with low computational complexity. Compared to multi-object segmentation by min-cut/max-flow algorithm, our approach is less restrictive, leading to globally optimal results in more general scenarios.</abstract>
		<language>en</language>
		<targetfile>2017_sibgrapi_LeissiCL.pdf</targetfile>
		<usergroup>leissicl@ime.usp.br</usergroup>
		<visibility>shown</visibility>
		<documentstage>not transferred</documentstage>
		<mirrorrepository>sid.inpe.br/banon/2001/03.30.15.38.24</mirrorrepository>
		<nexthigherunit>8JMKD3MGPAW/3PJT9LS</nexthigherunit>
		<nexthigherunit>8JMKD3MGPAW/3PKCC58</nexthigherunit>
		<hostcollection>sid.inpe.br/banon/2001/03.30.15.38</hostcollection>
		<agreement>agreement.html .htaccess .htaccess2</agreement>
		<lasthostcollection>sid.inpe.br/banon/2001/03.30.15.38</lasthostcollection>
		<url>http://sibgrapi.sid.inpe.br/rep-/sid.inpe.br/sibgrapi/2017/08.21.22.27</url>
	</metadata>
</metadatalist>