Identity statement area | |
Reference Type | Conference Paper (Conference Proceedings) |
Site | sibgrapi.sid.inpe.br |
Identifier | 8JMKD3MGPAW/3PFRBBL |
Repository | sid.inpe.br/sibgrapi/2017/08.21.21.30 |
Last Update | 2017:08.21.21.30.41 administrator |
Metadata | sid.inpe.br/sibgrapi/2017/08.21.21.30.41 |
Metadata Last Update | 2020:02.19.02.01.34 administrator |
Citation Key | AriasRamí:2017:SeAp |
Title | Learning to Cluster with Auxiliary Tasks: A Semi-Supervised Approach  |
Format | On-line |
Year | 2017 |
Date | Oct. 17-20, 2017 |
Access Date | 2021, Jan. 21 |
Number of Files | 1 |
Size | 657 KiB |
Context area | |
Author | 1 Arias, Jhosimar George 2 Ramírez, Gerberth Adín |
Editor | Torchelsen, Rafael Piccin Nascimento, Erickson Rangel do Panozzo, Daniele Liu, Zicheng Farias, Mylène Viera, Thales Sacht, Leonardo Ferreira, Nivan Comba, João Luiz Dihl Hirata, Nina Schiavon Porto, Marcelo Vital, Creto Pagot, Christian Azambuja Petronetto, Fabiano Clua, Esteban Cardeal, Flávio |
e-Mail Address | jhosimar.figueroa@students.ic.unicamp.br |
Conference Name | Conference on Graphics, Patterns and Images, 30 (SIBGRAPI) |
Conference Location | Niterói, RJ |
Book Title | Proceedings |
Publisher | IEEE Computer Society |
Publisher City | Los Alamitos |
Tertiary Type | Full Paper |
History | 2017-08-21 21:30:41 :: jhosimar.figueroa@students.ic.unicamp.br -> administrator :: 2020-02-19 02:01:34 :: administrator -> :: 2017 |
Content and structure area | |
Is the master or a copy? | is the master |
Content Stage | completed |
Transferable | 1 |
Content Type | External Contribution |
Keywords | deep learning, generative models, clustering, semi-supervised learning, probabilistic models. |
Abstract | In this paper, we propose a model to learn a feature-category latent representation of the data, that is guided by a semi-supervised auxiliary task. The goal of this auxiliary task is to assign labels to unlabeled data and regularize the feature space. Our model is represented by a modified version of a Categorical Variational Autoencoder, i.e., a probabilistic generative model that approximates a categorical distribution with variational inference. We benefit from the autoencoders architecture to learn powerful representations with Deep Neural Networks in an unsupervised way, and to optimize the model with semi-supervised tasks. We derived a loss function that integrates the probabilistic model with our auxiliary task to guide the learning process. Experimental results show the effectiveness of our method achieving more than 90% of clustering accuracy by using only 100 labeled examples. Moreover we show that the learned features have discriminative properties that can be used for classification. |
source Directory Content | there are no files |
agreement Directory Content | |
Conditions of access and use area | |
data URL | http://urlib.net/rep/8JMKD3MGPAW/3PFRBBL |
zipped data URL | http://urlib.net/zip/8JMKD3MGPAW/3PFRBBL |
Language | en |
Target File | 138.pdf |
User Group | jhosimar.figueroa@students.ic.unicamp.br |
Visibility | shown |
Update Permission | not transferred |
Allied materials area | |
Mirror Repository | sid.inpe.br/banon/2001/03.30.15.38.24 |
Next Higher Units | 8JMKD3MGPAW/3PJT9LS 8JMKD3MGPAW/3PKCC58 |
Host Collection | sid.inpe.br/banon/2001/03.30.15.38 |
Notes area | |
Empty Fields | accessionnumber affiliation archivingpolicy archivist area callnumber copyholder copyright creatorhistory descriptionlevel dissemination doi edition electronicmailaddress group holdercode isbn issn label lineage mark nextedition notes numberofvolumes orcid organization pages parameterlist parentrepositories previousedition previouslowerunit progress project readergroup readpermission resumeid rightsholder secondarydate secondarykey secondarymark secondarytype serieseditor session shorttitle sponsor subject tertiarymark type url versiontype volume |
| |