Close

1. Identity statement
Reference TypeConference Paper (Conference Proceedings)
Sitesibgrapi.sid.inpe.br
Holder Codeibi 8JMKD3MGPEW34M/46T9EHH
Identifier8JMKD3MGPAW/3PFPUKH
Repositorysid.inpe.br/sibgrapi/2017/08.21.14.04
Last Update2017:08.21.14.04.46 (UTC) administrator
Metadata Repositorysid.inpe.br/sibgrapi/2017/08.21.14.04.46
Metadata Last Update2022:06.14.00.08.53 (UTC) administrator
DOI10.1109/SIBGRAPI.2017.55
Citation KeyVogadoVeAnArSiAi:2017:DiLeBl
TitleDiagnosing Leukemia in Blood Smear Images Using an Ensemble of Classifiers and Pre-trained Convolutional Neural Networks
FormatOn-line
Year2017
Access Date2024, Oct. 15
Number of Files1
Size5223 KiB
2. Context
Author1 Vogado, Luis Henrique Silva
2 Veras, Rodrigo de Melo Souza
3 Andrade, Alan Ribeiro
4 Araujo, Flavio Henrique Duarte de
5 Silva, Romuere Rodrigues Veloso e
6 Aires, Kelson Romulo Teixeira
Affiliation1 Universidade Federal do Piauí
2 Universidade Federal do Piauí
3 Universidade Federal do Piauí
4 Universidade Federal do Piauí
5 Universidade Federal do Piauí
6 Universidade Federal do Piauí
EditorTorchelsen, Rafael Piccin
Nascimento, Erickson Rangel do
Panozzo, Daniele
Liu, Zicheng
Farias, Mylène
Viera, Thales
Sacht, Leonardo
Ferreira, Nivan
Comba, João Luiz Dihl
Hirata, Nina
Schiavon Porto, Marcelo
Vital, Creto
Pagot, Christian Azambuja
Petronetto, Fabiano
Clua, Esteban
Cardeal, Flávio
e-Mail Addresslhvogado@gmail.com
Conference NameConference on Graphics, Patterns and Images, 30 (SIBGRAPI)
Conference LocationNiterói, RJ, Brazil
Date17-20 Oct. 2017
PublisherIEEE Computer Society
Publisher CityLos Alamitos
Book TitleProceedings
Tertiary TypeFull Paper
History (UTC)2017-08-21 14:04:46 :: lhvogado@gmail.com -> administrator ::
2022-06-14 00:08:53 :: administrator -> :: 2017
3. Content and structure
Is the master or a copy?is the master
Content Stagecompleted
Transferable1
Version Typefinaldraft
Keywordsleukemia
computer-aided diagnosis
convolutional neural networks
transfer learning
AbstractLeukemia is a worldwide disease. In this paper we demonstrate that it is possible to build an automated, efficient and rapid leukemia diagnosis system. We demonstrate that it is possible to improve the precision of current techniques from the literature using the description power of well-known Convolutional Neural Networks (CNNs). We extract features from a blood smear image using pre-trained CNNs in order to obtain an unique image description. Many feature selection techniques were evaluated and we chose PCA to select the features that are in the final descriptor. To classify the images on healthy and pathological we created an ensemble of classifiers with three individual classification algorithms (Support Vector Machine, Multilayer Perceptron and Random Forest). In the tests we obtained an accuracy rate of 100%. Besides the high accuracy rate, the tests showed that our approach requires less processing time than the methods analyzed in this paper, considering the fact that our approach does not use segmentation to obtain specific cell regions from the blood smear image.
Arrangement 1urlib.net > SDLA > Fonds > SIBGRAPI 2017 > Diagnosing Leukemia in...
Arrangement 2urlib.net > SDLA > Fonds > Full Index > Diagnosing Leukemia in...
doc Directory Contentaccess
source Directory Contentthere are no files
agreement Directory Content
agreement.html 21/08/2017 11:04 1.2 KiB 
4. Conditions of access and use
data URLhttp://urlib.net/ibi/8JMKD3MGPAW/3PFPUKH
zipped data URLhttp://urlib.net/zip/8JMKD3MGPAW/3PFPUKH
Languageen
Target FilePID4959787.pdf
User Grouplhvogado@gmail.com
Visibilityshown
Update Permissionnot transferred
5. Allied materials
Mirror Repositorysid.inpe.br/banon/2001/03.30.15.38.24
Next Higher Units8JMKD3MGPAW/3PKCC58
8JMKD3MGPEW34M/4742MCS
Citing Item Listsid.inpe.br/sibgrapi/2017/09.12.13.04 30
sid.inpe.br/sibgrapi/2022/06.10.21.49 3
sid.inpe.br/banon/2001/03.30.15.38.24 1
Host Collectionsid.inpe.br/banon/2001/03.30.15.38
6. Notes
Empty Fieldsarchivingpolicy archivist area callnumber contenttype copyholder copyright creatorhistory descriptionlevel dissemination edition electronicmailaddress group isbn issn label lineage mark nextedition notes numberofvolumes orcid organization pages parameterlist parentrepositories previousedition previouslowerunit progress project readergroup readpermission resumeid rightsholder schedulinginformation secondarydate secondarykey secondarymark secondarytype serieseditor session shorttitle sponsor subject tertiarymark type url volume


Close