1. Identity statement | |
Reference Type | Conference Paper (Conference Proceedings) |
Site | sibgrapi.sid.inpe.br |
Holder Code | ibi 8JMKD3MGPEW34M/46T9EHH |
Identifier | 8JMKD3MGPAW/3PFMFUH |
Repository | sid.inpe.br/sibgrapi/2017/08.21.00.34 |
Last Update | 2017:08.21.00.34.08 (UTC) administrator |
Metadata Repository | sid.inpe.br/sibgrapi/2017/08.21.00.34.08 |
Metadata Last Update | 2022:06.14.00.08.52 (UTC) administrator |
DOI | 10.1109/SIBGRAPI.2017.64 |
Citation Key | GoncalvesGayaDrewBote:2017:EnDeMe |
Title | DeepDive: An End-to-End Dehazing Method Using Deep Learning |
Format | On-line |
Year | 2017 |
Access Date | 2024, Oct. 08 |
Number of Files | 1 |
Size | 1083 KiB |
|
2. Context | |
Author | 1 Goncalves, Lucas Teixeira 2 Gaya, Joel de Oliveira 3 Drews-Jr, Paulo 4 Botelho, Silvia Silva da Costa |
Affiliation | 1 Universidade Federal do Rio Grande 2 Universidade Federal do Rio Grande 3 Universidade Federal do Rio Grande 4 Universidade Federal do Rio Grande |
Editor | Torchelsen, Rafael Piccin Nascimento, Erickson Rangel do Panozzo, Daniele Liu, Zicheng Farias, Mylène Viera, Thales Sacht, Leonardo Ferreira, Nivan Comba, João Luiz Dihl Hirata, Nina Schiavon Porto, Marcelo Vital, Creto Pagot, Christian Azambuja Petronetto, Fabiano Clua, Esteban Cardeal, Flávio |
e-Mail Address | lucasteixeirag11@gmail.com |
Conference Name | Conference on Graphics, Patterns and Images, 30 (SIBGRAPI) |
Conference Location | Niterói, RJ, Brazil |
Date | 17-20 Oct. 2017 |
Publisher | IEEE Computer Society |
Publisher City | Los Alamitos |
Book Title | Proceedings |
Tertiary Type | Full Paper |
History (UTC) | 2017-08-21 00:34:08 :: lucasteixeirag11@gmail.com -> administrator :: 2022-06-14 00:08:52 :: administrator -> :: 2017 |
|
3. Content and structure | |
Is the master or a copy? | is the master |
Content Stage | completed |
Transferable | 1 |
Version Type | finaldraft |
Keywords | Deep Learning Image Dehazing Convolutional Neural Network |
Abstract | Image dehazing can be described as the problem of mapping from a hazy image to a haze-free image. Most approaches to this problem use physical models based on simplifications and priors. In this work we demonstrate that a convolutional neural network with a deep architecture and a large image database is able to learn the entire process of dehazing, without the need to adjust parameters, resulting in a much more generic method. We evaluate our approach applying it to real scenes corrupted by haze. The results show that even though our network is trained with simulated indoor images, it is capable of dehazing real outdoor scenes, learning to treat the degradation effect itself, not to reconstruct the scene behind it. |
Arrangement 1 | urlib.net > SDLA > Fonds > SIBGRAPI 2017 > DeepDive: An End-to-End... |
Arrangement 2 | urlib.net > SDLA > Fonds > Full Index > DeepDive: An End-to-End... |
doc Directory Content | access |
source Directory Content | there are no files |
agreement Directory Content | |
|
4. Conditions of access and use | |
data URL | http://urlib.net/ibi/8JMKD3MGPAW/3PFMFUH |
zipped data URL | http://urlib.net/zip/8JMKD3MGPAW/3PFMFUH |
Language | en |
Target File | PID4958913.pdf |
User Group | lucasteixeirag11@gmail.com |
Visibility | shown |
Update Permission | not transferred |
|
5. Allied materials | |
Mirror Repository | sid.inpe.br/banon/2001/03.30.15.38.24 |
Next Higher Units | 8JMKD3MGPAW/3PKCC58 8JMKD3MGPEW34M/4742MCS |
Citing Item List | sid.inpe.br/sibgrapi/2017/09.12.13.04 43 sid.inpe.br/sibgrapi/2022/06.10.21.49 3 sid.inpe.br/banon/2001/03.30.15.38.24 1 |
Host Collection | sid.inpe.br/banon/2001/03.30.15.38 |
|
6. Notes | |
Empty Fields | archivingpolicy archivist area callnumber contenttype copyholder copyright creatorhistory descriptionlevel dissemination edition electronicmailaddress group isbn issn label lineage mark nextedition notes numberofvolumes orcid organization pages parameterlist parentrepositories previousedition previouslowerunit progress project readergroup readpermission resumeid rightsholder schedulinginformation secondarydate secondarykey secondarymark secondarytype serieseditor session shorttitle sponsor subject tertiarymark type url volume |
|