Close

%0 Conference Proceedings
%4 sid.inpe.br/sibgrapi/2016/08.17.00.27
%2 sid.inpe.br/sibgrapi/2016/08.17.00.27.59
%T Partial Least Squares for Face Hashing
%D 2016
%A Santos Junior, Cassio E dos,
%A Schwartz, William Robson,
%@affiliation Universidade Federal de Minas Gerais
%@affiliation Universidade Federal de Minas Gerais
%E Aliaga, Daniel G.,
%E Davis, Larry S.,
%E Farias, Ricardo C.,
%E Fernandes, Leandro A. F.,
%E Gibson, Stuart J.,
%E Giraldi, Gilson A.,
%E Gois, João Paulo,
%E Maciel, Anderson,
%E Menotti, David,
%E Miranda, Paulo A. V.,
%E Musse, Soraia,
%E Namikawa, Laercio,
%E Pamplona, Mauricio,
%E Papa, João Paulo,
%E Santos, Jefersson dos,
%E Schwartz, William Robson,
%E Thomaz, Carlos E.,
%B Conference on Graphics, Patterns and Images, 29 (SIBGRAPI)
%C São José dos Campos, SP, Brazil
%8 4-7 Oct. 2016
%I Sociedade Brasileira de Computação
%J Porto Alegre
%S Proceedings
%K face identification, partial least squares, large-scale image retrieval.
%X Face identification is an important research topic for applications such as surveillance, forensics, and human-computer interaction. In the past few years, a myriad of methods for face identification has been proposed in the literature, with just a few among them focusing on scalability. In this work, we propose a simple but efficient approach for scalable face identification based on partial least squares (PLS) and random independent hash functions inspired by locality-sensitive hashing (LSH), resulting in the PLS for hashing (PLSH) approach. The original PLSH approach is further extended using feature selection to reduce the computational cost to evaluate the PLS- based hash functions, resulting in the state-of-the-art extended PLSH approach (ePLSH). The proposed approach is evaluated in the dataset FERET and in the dataset FRGCv1. The results show a significant reduction in the number of subjects evaluated in the face identification (reduced to 0.3% of the gallery), providing averaged speedups up to 233 times compared to evaluating all subjects in the face gallery and 58 times compared to previous works in the literature.
%@language en
%3 main.pdf


Close