<?xml version="1.0" encoding="ISO-8859-1"?>
<metadatalist>
	<metadata ReferenceType="Conference Proceedings">
		<site>sibgrapi.sid.inpe.br 802</site>
		<identifier>8JMKD3MGPBW34M/3DEAJQ2</identifier>
		<repository>sid.inpe.br/sibgrapi/2013/01.24.15.18</repository>
		<lastupdate>2013:01.24.15.18.36 sid.inpe.br/banon/2001/03.30.15.38 administrator</lastupdate>
		<metadatarepository>sid.inpe.br/sibgrapi/2013/01.24.15.18.36</metadatarepository>
		<metadatalastupdate>2013:02.02.13.16.09 sid.inpe.br/banon/2001/03.30.15.38 administrator {D 1994}</metadatalastupdate>
		<isbn>978-85-7669-272-0</isbn>
		<citationkey>BastosOliv:1994:ImSaRe</citationkey>
		<title>Improved sampling and reconstruction in radiosity</title>
		<format>Impresso, On-line.</format>
		<year>1994</year>
		<numberoffiles>1</numberoffiles>
		<size>7383 KiB</size>
		<author>Bastos, Rui Manuel Ribeiro de,</author>
		<author>Oliveira Neto, Manuel Menezes de,</author>
		<affiliation>Centro Nacional de Supercomputação (CESUP) da Universidade Federal do Rio Grande do Sul (UFRGS)</affiliation>
		<affiliation>Centro Nacional de Supercomputação (CESUP) da Universidade Federal do Rio Grande do Sul (UFRGS)</affiliation>
		<editor>Freitas, Carla dal Sasso,</editor>
		<editor>Geus, Klaus de,</editor>
		<editor>Scheer, Sérgio,</editor>
		<e-mailaddress>cintiagraziele.silva@gmail.com</e-mailaddress>
		<conferencename>Simpósio Brasileiro de Computação Gráfica e Processamento de Imagens, 7 (SIBGRAPI)</conferencename>
		<conferencelocation>Curitiba</conferencelocation>
		<date>9 - 11 nov. 1994</date>
		<publisher>Sociedade Brasileira de Computação</publisher>
		<publisheraddress>Porto Alegre</publisheraddress>
		<volume>1</volume>
		<pages>255-262</pages>
		<booktitle>Anais</booktitle>
		<tertiarytype>Artigo</tertiarytype>
		<transferableflag>1</transferableflag>
		<keywords>radiosity, reconstruction techniques, realistic imagery, reconstruction in radiosity.</keywords>
		<abstract>Radiosity is a sampling and reconstruction method that approximates radiance function of real environments. Bad scene sampling leads to many artifacts in final images. Discontinuity meshing can provide initial meshing that warrants good sampling for regions with discontinuities in the illumination function. Although, that technique is unable to work in regions with no discontinuities. In such situations, adaptive subdivision can improve sampling. Even using adequate sampling, bad results are achieved if inadequate reconstruction of illumination functions. This paper analyses different combinations of sampling and reconstruction techniques and their contributions to improve realistic imagery.</abstract>
		<type>Realismo e Visualização</type>
		<language>en</language>
		<targetfile>34 Improved sampling and reconstruction in radiosity.pdf</targetfile>
		<usergroup>administrator</usergroup>
		<usergroup>cintiagraziele.silva@gmail.com</usergroup>
		<visibility>shown</visibility>
		<mirrorrepository>sid.inpe.br/sibgrapi@80/2007/08.02.16.22</mirrorrepository>
		<hostcollection>sid.inpe.br/banon/2001/03.30.15.38</hostcollection>
		<username>cintiagraziele.silva@gmail.com</username>
		<lasthostcollection>sid.inpe.br/banon/2001/03.30.15.38</lasthostcollection>
		<url>http://sibgrapi.sid.inpe.br/rep-/sid.inpe.br/sibgrapi/2013/01.24.15.18</url>
	</metadata>
</metadatalist>