Identity statement area
Reference TypeConference Paper (Conference Proceedings)
Last Update2012: administrator
Metadata Last Update2013: administrator
Citation KeyTorreãoPimeRoe:1993:ObSuCu
TitleObtaining surface curvature and depth information with a disparity-based photometric stereo
FormatImpresso, On-line.
Access Date2021, Mar. 07
Number of Files1
Size7285 KiB
Context area
Author1 Torreão, José Ricardo de Almeida
2 Pimentel, Cecílio José Lins
3 Roe, Edward
Affiliation1 Departamento de Informática da Universidade Federal de Pernambuco (UFPE)
2 Departamento de Informática da Universidade Federal de Pernambuco (UFPE)
3 Departamento de Informática da Universidade Federal de Pernambuco (UFPE)
EditorFigueiredo, Luiz Henrique de
Gomes, Jonas de Miranda
Conference NameSimpósio Brasileiro de Computação Gráfica e Processamento de Imagens, 6 (SIBGRAPI)
Conference LocationRecife
Date19 - 22 out. 1993
PublisherSociedade Brasileira de Computação
Publisher CityPorto Alegre
Book TitleAnais
Tertiary TypeArtigo
History2012-12-17 14:01:37 :: -> administrator ::
2013-01-03 01:24:55 :: administrator -> :: 1993
Content and structure area
Is the master or a copy?is the master
Content Stagecompleted
KeywordsDisparity-Based Photometric Stereo, computer vision, photometric images.
AbstractDisparity-Based Photometric Stereo (DBPS) is a recently introduced Computer Vision process which extracts a disparity field from two or more photometric stereo images by tracking the displacement of pixel intensities resulting from the change in the illumination of the observed scene. Such photometric-disparity field is akin to the disparity field due to the change of viewing position in Stereoscopy, and can be obtained through essentially the same stereo correspondence algorithms. In the present article, we relate the photometric-disparity field to the curvature of the imaged surfaces, and also show how it can be used for the inference of depth through a new version of the Dual Photometric Stereo process, which employs two cameras and multiple illuminations. We illustrate our approach with a neural net simulation of the stereo correspondence algorithms.
TypeVisão por Computador
source Directory Contentthere are no files
agreement Directory Contentthere are no files
Conditions of access and use area
data URL
zipped data URL
Target File28 Obtaining surface curvature.pdf
User Groupadministrator
Allied materials area
Notes area
Empty Fieldsaccessionnumber archivingpolicy archivist area callnumber contenttype copyholder copyright creatorhistory descriptionlevel dissemination documentstage doi edition electronicmailaddress group holdercode issn label lineage mark nextedition nexthigherunit notes numberofvolumes orcid organization parameterlist parentrepositories previousedition previouslowerunit progress project readergroup readpermission resumeid rightsholder secondarydate secondarykey secondarymark secondarytype serieseditor session shorttitle sponsor subject tertiarymark url versiontype
Description control area
e-Mail (login)