Close
Metadata

@InProceedings{Frķas:1992:TrRoIn,
               author = "Fr{\'{\i}}as, Bruno Cernuschi",
          affiliation = "{Facultad de Ingenier{\'{\i}}a da Universidad de Buenos Aires}",
                title = "Translation and rotation invariant algebraic curve and surface 
                         fitting",
            booktitle = "Anais...",
                 year = "1992",
               editor = "C{\^a}mara, Gilberto and Gomes, Jonas de Miranda",
                pages = "89--95",
         organization = "Simp{\'o}sio Brasileiro de Computa{\c{c}}{\~a}o Gr{\'a}fica e 
                         Processamento de Imagens, 5. (SIBGRAPI)",
            publisher = "Sociedade Brasileira de Computa{\c{c}}{\~a}o",
              address = "Porto Alegre",
             keywords = "modeling, Bockstein constraint, method to fit algebraic curves, 
                         method to fit algebraic surfaces.",
             abstract = "A method to fit algebraic curves and surfaces using a data 
                         independent constraint invariant to rotations and translations is 
                         presented. This constraint corresponds to the generalization of 
                         the Bockstein constraint to algebraic curves of arbitrary order p 
                         > 1 in 2 D space, and algebraic surfaces of arbitrary order p > 1 
                         in N-dimensional real space, with N > 3. The fitting is solved 
                         using standard eingenvector-eingenvalue results.",
  conference-location = "{\'A}guas de Lind{\'o}ia",
      conference-year = "10 - 12 nov. 1992",
                 isbn = "978-85-7669-270-6",
             language = "en",
                  ibi = "8JMKD3MGPBW34M/3CRH4DL",
                  url = "http://urlib.net/rep/8JMKD3MGPBW34M/3CRH4DL",
           targetfile = "11 Translation and rotation invariant algebraic curve and surface 
                         fitting.pdf",
                 type = "Modelagem",
               volume = "1",
        urlaccessdate = "2020, Oct. 28"
}


Close