<?xml version="1.0" encoding="ISO-8859-1"?>
<metadatalist>
	<metadata ReferenceType="Conference Proceedings">
		<site>sibgrapi.sid.inpe.br 802</site>
		<identifier>8JMKD3MGPBW34M/3CA9295</identifier>
		<repository>sid.inpe.br/sibgrapi/2012/07.17.14.11</repository>
		<lastupdate>2012:07.17.14.11.48 sid.inpe.br/banon/2001/03.30.15.38 fernanda@andalo.net.br</lastupdate>
		<metadatarepository>sid.inpe.br/sibgrapi/2012/07.17.14.11.48</metadatarepository>
		<metadatalastupdate>2020:02.19.02.18.29 sid.inpe.br/banon/2001/03.30.15.38 administrator {D 2012}</metadatalastupdate>
		<citationkey>AndalóTaubGold:2012:SoImPu</citationkey>
		<title>Solving Image Puzzles with a Simple Quadratic Programming Formulation</title>
		<format>DVD, On-line.</format>
		<year>2012</year>
		<numberoffiles>1</numberoffiles>
		<size>4470 KiB</size>
		<author>Andaló, Fernanda A.,</author>
		<author>Taubin, Gabriel,</author>
		<author>Goldenstein, Siome,</author>
		<affiliation>Institute of Computing, Unicamp</affiliation>
		<affiliation>Divion of Engineering, Brown University</affiliation>
		<affiliation>Institute of Computing, Unicamp</affiliation>
		<editor>Freitas, Carla Maria Dal Sasso,</editor>
		<editor>Sarkar, Sudeep,</editor>
		<editor>Scopigno, Roberto,</editor>
		<editor>Silva, Luciano,</editor>
		<e-mailaddress>fernanda@andalo.net.br</e-mailaddress>
		<conferencename>Conference on Graphics, Patterns and Images, 25 (SIBGRAPI)</conferencename>
		<conferencelocation>Ouro Preto</conferencelocation>
		<date>Aug. 22-25, 2012</date>
		<booktitle>Proceedings</booktitle>
		<publisher>IEEE Computer Society</publisher>
		<publisheraddress>Los Alamitos</publisheraddress>
		<tertiarytype>Full Paper</tertiarytype>
		<transferableflag>1</transferableflag>
		<contenttype>External Contribution</contenttype>
		<keywords>image puzzle, jigsaw puzzle, image analysis, quadratic programming.</keywords>
		<abstract>We present a new formulation to automatically solve jigsaw puzzles considering only the information contained on the image. Our formulation maps the problem of solving a jigsaw puzzle to the maximization of a constrained quadratic function that can be solved by a numerical method. The proposed method is deterministic and it can handle arbitrary rectangular pieces. We tested the validity of the method to solve problems up to 3300 puzzle pieces, and we compared our results to the current state-of-the-art, obtaining superior accuracy.</abstract>
		<language>en</language>
		<targetfile>101289.pdf</targetfile>
		<usergroup>fernanda@andalo.net.br</usergroup>
		<visibility>shown</visibility>
		<mirrorrepository>sid.inpe.br/banon/2001/03.30.15.38.24</mirrorrepository>
		<hostcollection>sid.inpe.br/banon/2001/03.30.15.38</hostcollection>
		<agreement>agreement.html .htaccess .htaccess2</agreement>
		<lasthostcollection>sid.inpe.br/banon/2001/03.30.15.38</lasthostcollection>
		<url>http://sibgrapi.sid.inpe.br/rep-/sid.inpe.br/sibgrapi/2012/07.17.14.11</url>
	</metadata>
</metadatalist>