1. Identity statement | |
Reference Type | Conference Paper (Conference Proceedings) |
Site | sibgrapi.sid.inpe.br |
Holder Code | ibi 8JMKD3MGPEW34M/46T9EHH |
Identifier | 8JMKD3MGPBW34M/3C9UQ2L |
Repository | sid.inpe.br/sibgrapi/2012/07.15.22.51 |
Last Update | 2012:07.15.22.51.27 (UTC) administrator |
Metadata Repository | sid.inpe.br/sibgrapi/2012/07.15.22.51.27 |
Metadata Last Update | 2022:06.14.00.07.36 (UTC) administrator |
DOI | 10.1109/SIBGRAPI.2012.53 |
Citation Key | AmorimCarv:2012:SuLeUs |
Title | Supervised Learning Using Local Analysis in an Optimal-Path Forest |
Format | DVD, On-line. |
Year | 2012 |
Access Date | 2024, Sep. 18 |
Number of Files | 1 |
Size | 609 KiB |
|
2. Context | |
Author | 1 Amorim, Willian Paraguassu 2 Carvalho, Marcelo Henriques de |
Affiliation | 1 FACOM - Institute of Computing, Federal University of Mato Grosso do Sul - UFMS 2 FACOM - Institute of Computing, Federal University of Mato Grosso do Sul - UFMS |
Editor | Freitas, Carla Maria Dal Sasso Sarkar, Sudeep Scopigno, Roberto Silva, Luciano |
e-Mail Address | paraguassuec@gmail.com |
Conference Name | Conference on Graphics, Patterns and Images, 25 (SIBGRAPI) |
Conference Location | Ouro Preto, MG, Brazil |
Date | 22-25 Aug. 2012 |
Publisher | IEEE Computer Society |
Publisher City | Los Alamitos |
Book Title | Proceedings |
Tertiary Type | Full Paper |
History (UTC) | 2012-09-20 16:45:34 :: paraguassuec@gmail.com -> administrator :: 2012 2022-03-08 21:03:24 :: administrator -> menottid@gmail.com :: 2012 2022-03-10 12:49:08 :: menottid@gmail.com -> administrator :: 2012 2022-06-14 00:07:36 :: administrator -> :: 2012 |
|
3. Content and structure | |
Is the master or a copy? | is the master |
Content Stage | completed |
Transferable | 1 |
Version Type | finaldraft |
Keywords | Supervised classifiers Optimal-Path Forest |
Abstract | In this paper, we present an OPF-LA (Optimal Path Forest--Local Analysis), a new learning model proposal. OPF-LA is a heuristic that uses local information for selecting prototypes that, in turn, will be used to classify new data. It employs the main ideas of an OPF classifier, suggesting a new procedure in the data training phase. Experimental results show the advantages in efficiency and accuracy over classical learning algorithms in areas such as Support Vector Machines (SVM), Artificial Neural Networks using Multilayer Perceptrons (MP), and Optimal Path Forest (OPF), in several applications. |
Arrangement 1 | urlib.net > SDLA > Fonds > SIBGRAPI 2012 > Supervised Learning Using... |
Arrangement 2 | urlib.net > SDLA > Fonds > Full Index > Supervised Learning Using... |
doc Directory Content | access |
source Directory Content | there are no files |
agreement Directory Content | |
|
4. Conditions of access and use | |
data URL | http://urlib.net/ibi/8JMKD3MGPBW34M/3C9UQ2L |
zipped data URL | http://urlib.net/zip/8JMKD3MGPBW34M/3C9UQ2L |
Language | en |
Target File | PID2448677.pdf |
User Group | paraguassuec@gmail.com |
Visibility | shown |
|
5. Allied materials | |
Mirror Repository | sid.inpe.br/banon/2001/03.30.15.38.24 |
Next Higher Units | 8JMKD3MGPEW34M/46SL8GS 8JMKD3MGPEW34M/4742MCS |
Citing Item List | sid.inpe.br/sibgrapi/2022/05.15.03.31 24 sid.inpe.br/sibgrapi/2022/06.10.21.49 5 |
Host Collection | sid.inpe.br/banon/2001/03.30.15.38 |
|
6. Notes | |
Empty Fields | archivingpolicy archivist area callnumber contenttype copyholder copyright creatorhistory descriptionlevel dissemination documentstage edition electronicmailaddress group isbn issn label lineage mark nextedition notes numberofvolumes orcid organization pages parameterlist parentrepositories previousedition previouslowerunit progress project readergroup readpermission resumeid rightsholder schedulinginformation secondarydate secondarykey secondarymark secondarytype serieseditor session shorttitle sponsor subject tertiarymark type url volume |
|