<?xml version="1.0" encoding="ISO-8859-1"?>
<metadatalist>
	<metadata ReferenceType="Conference Proceedings">
		<identifier>8JMKD3MGPBW34M/3897BMR</identifier>
		<repository>sid.inpe.br/sibgrapi/2010/09.15.18.18.50</repository>
		<metadatarepository>sid.inpe.br/sibgrapi/2010/09.15.18.18.51</metadatarepository>
		<site>sibgrapi.sid.inpe.br 802</site>
		<citationkey>PereiraGomiStol:2010:CoFiEl</citationkey>
		<author>Pereira, Danillo Roberto,</author>
		<author>Gomide, Anamaria,</author>
		<author>Stolfi, Jorge,</author>
		<affiliation>Insitute of Computing - UNICAMP</affiliation>
		<affiliation>Insitute of Computing - UNICAMP</affiliation>
		<affiliation>Insitute of Computing - UNICAMP</affiliation>
		<title>Comparison of Finite Element Bases for Global Illumination in Image Synthesis</title>
		<conferencename>Conference on Graphics, Patterns and Images, 23 (SIBGRAPI)</conferencename>
		<year>2010</year>
		<editor>Bellon, Olga,</editor>
		<editor>Esperanša, Claudio,</editor>
		<booktitle>Proceedings</booktitle>
		<date>Aug. 30 - Sep. 3, 2010</date>
		<publisheraddress>Los Alamitos</publisheraddress>
		<publisher>IEEE Computer Society</publisher>
		<conferencelocation>Gramado</conferencelocation>
		<keywords>Radiosity FEM.</keywords>
		<abstract>Finite element bases defined by sampling points were used by   J. Lehtinen in 2008 for the efficient computation of global   illumination in virtual scenes. The bases provide smooth   approximations for the radiosity and spontaneous emission functions,   leading to a discrete version of Kajiya's rendering equation. Unlike   methods that are based on surface subdivision, Lehtinen's method can   cope with arbitrarily complex geometries. In this paper we present an   experimental validation of Lehtinen's meshless method by comparing   its results with an independent numerical solution of the rendering equation   on a simple three-dimensional scene. We also compare Lehtinen's   special finite-element basis with two other similar bases that are   often used for meshless data interpolation, namely a radial basis with a Gaussian   mother function, and Shepard's inverse-square-distance weighted interpolation. The   results confirm the superiority of Lehtinen's basis and clarify why   the other two bases provide inferior-looking results. .</abstract>
		<language>en</language>
		<tertiarytype>Full Paper</tertiarytype>
		<format>Printed, On-line.</format>
		<size>273 Kbytes</size>
		<numberoffiles>1</numberoffiles>
		<targetfile>69515_2.pdf</targetfile>
		<lastupdate>2010:09.15.18.18.50 sid.inpe.br/banon/2001/03.30.15.38 dpereira@ic.unicamp.br</lastupdate>
		<metadatalastupdate>2010:10.01.04.19.39 sid.inpe.br/banon/2001/03.30.15.38 dpereira@ic.unicamp.br {D 2010}</metadatalastupdate>
		<mirrorrepository>dpi.inpe.br/banon-pc2@80/2006/08.30.19.27</mirrorrepository>
		<e-mailaddress>dpereira@ic.unicamp.br</e-mailaddress>
		<usergroup>dpereira@ic.unicamp.br</usergroup>
		<visibility>shown</visibility>
		<transferableflag>1</transferableflag>
		<hostcollection>sid.inpe.br/banon/2001/03.30.15.38</hostcollection>
		<contenttype>External Contribution</contenttype>
		<lasthostcollection>sid.inpe.br/banon/2001/03.30.15.38</lasthostcollection>
		<url>http://sibgrapi.sid.inpe.br/rep-/sid.inpe.br/sibgrapi/2010/09.15.18.18.50</url>
	</metadata>
</metadatalist>