Reference TypeConference Proceedings
Citation KeyAmorimPistPereJaci:2010:AtReAp
Author1 Amorim, Willian Paraguassu
2 Pistori, Hemerson
3 Pereira, Mauro Conti
4 Jacinto, Manuel Antonio Chagas
TitleAttributes Reduction applied to Leather Defects Classification
Conference NameConference on Graphics, Patterns and Images, 23 (SIBGRAPI)
EditorBellon, Olga
Esperanša, Claudio
Book TitleProceedings
DateAug. 30 - Sep. 3, 2010
Publisher CityLos Alamitos
PublisherIEEE Computer Society
Conference LocationGramado
KeywordsAttributes reduction, Linear discriminant analysis, Leather defect detection.
AbstractThis paper presents a study on attributes reduction, comparing five discriminant analysis techniques: FisherFace, CLDA, DLDA, YLDA and KLDA. Attributes reduction has been applied to the problem of leather defect classification using four different classifiers: C4.5, kNN, Naive Bayes and Support Vector Machines. The results of several experiments on the performance of discriminant analysis applied to the problem of defect detection are reported.
OrganizationConference on Graphics, Patterns and Images, 23.(SIBGRAPI)
Size3706 KiB
Number of Files1
Target FilePID1394609.pdf
Last Update2010:
Metadata Last Update2010: {D 2010}
Document Stagecompleted
Is the master or a copy?is the master
Content TypeExternal Contribution
source Directory Contentthere are no files
agreement Directory Contentthere are no files
History2010-10-01 04:19:38 :: -> :: 2010
Empty Fieldsaccessionnumber affiliation archivingpolicy archivist area callnumber copyholder copyright creatorhistory descriptionlevel dissemination documentstage doi edition electronicmailaddress group holdercode isbn issn label lineage mark nextedition nexthigherunit notes numberofvolumes orcid pages parameterlist parentrepositories previousedition previouslowerunit progress project readergroup readpermission resumeid rightsholder secondarydate secondarykey secondarymark secondarytype serieseditor session shorttitle sponsor subject tertiarymark tertiarytype type url versiontype volume
Access Date2020, Nov. 28