<?xml version="1.0" encoding="ISO-8859-1"?>
<metadatalist>
	<metadata ReferenceType="Conference Proceedings">
		<site>sibgrapi.sid.inpe.br 802</site>
		<identifier>6qtX3pFwXQZeBBx/H3uPp</identifier>
		<repository>sid.inpe.br/banon/2005/08.03.15.07</repository>
		<lastupdate>2005:08.03.03.00.00 sid.inpe.br/banon/2001/03.30.15.38 administrator</lastupdate>
		<metadatarepository>sid.inpe.br/banon/2005/08.03.15.07.47</metadatarepository>
		<metadatalastupdate>2020:02.19.03.19.23 sid.inpe.br/banon/2001/03.30.15.38 administrator {D 2005}</metadatalastupdate>
		<citationkey>Machado:2005:DeHiSp</citationkey>
		<title>True factor analysis in medical imaging: Dealing with high-dimensional spaces</title>
		<format>On-line</format>
		<year>2005</year>
		<date>9-12 Oct. 2005</date>
		<numberoffiles>1</numberoffiles>
		<size>233 KiB</size>
		<author>Machado, Alexei Manso Correa,</author>
		<affiliation>Pontifícia Universidade Católica de Minas Gerais</affiliation>
		<editor>Rodrigues, Maria Andréia Formico,</editor>
		<editor>Frery, Alejandro César,</editor>
		<e-mailaddress>alexei@pucminas.br</e-mailaddress>
		<conferencename>Brazilian Symposium on Computer Graphics and Image Processing, 18 (SIBGRAPI)</conferencename>
		<conferencelocation>Natal</conferencelocation>
		<booktitle>Proceedings</booktitle>
		<publisher>IEEE Computer Society</publisher>
		<publisheraddress>Los Alamitos</publisheraddress>
		<transferableflag>1</transferableflag>
		<contenttype>External Contribution</contenttype>
		<tertiarytype>Full Paper</tertiarytype>
		<keywords>Medical imaging, image registration, factor analysis.</keywords>
		<abstract>This article presents a new method for discovering hidden patterns in high-dimensional dataset resulting from image registration. It is based on true factor analysis, a statistical model that aims to find clusters of correlated variables. Applied to medical imaging, factor analysis can potentially identify regions that have anatomic significance and lend insight to knowledge discovery and morphometric investigations related to pathologies. Existent factor analytic methods require the computation of the sample covariance matrix and are thus limited to low-dimensional variable spaces. The proposed algorithm is able to compute the coefficients of the model without the need of the covariance matrix, expanding its spectrum of applications. The method's efficiency and effectiveness is demonstrated in a study of volumetric variability related to the Alzheimer's disease.  .</abstract>
		<language>en</language>
		<targetfile>machadoa_true.pdf</targetfile>
		<usergroup>alexeimachado administrator</usergroup>
		<visibility>shown</visibility>
		<hostcollection>sid.inpe.br/banon/2001/03.30.15.38</hostcollection>
		<lasthostcollection>sid.inpe.br/banon/2001/03.30.15.38</lasthostcollection>
		<url>http://sibgrapi.sid.inpe.br/rep-/sid.inpe.br/banon/2005/08.03.15.07</url>
	</metadata>
</metadatalist>