Close
Metadata

Identity statement area
Reference TypeConference Paper (Conference Proceedings)
Sitesibgrapi.sid.inpe.br
Identifier6qtX3pFwXQZeBBx/H3uPp
Repositorysid.inpe.br/banon/2005/08.03.15.07
Last Update2005:08.03.03.00.00 administrator
Metadatasid.inpe.br/banon/2005/08.03.15.07.47
Metadata Last Update2020:02.19.03.19.23 administrator
Citation KeyMachado:2005:DeHiSp
TitleTrue factor analysis in medical imaging: Dealing with high-dimensional spaces
FormatOn-line
Year2005
Date9-12 Oct. 2005
Access Date2021, Jan. 19
Number of Files1
Size233 KiB
Context area
AuthorMachado, Alexei Manso Correa
AffiliationPontifícia Universidade Católica de Minas Gerais
EditorRodrigues, Maria Andréia Formico
Frery, Alejandro César
e-Mail Addressalexei@pucminas.br
Conference NameBrazilian Symposium on Computer Graphics and Image Processing, 18 (SIBGRAPI)
Conference LocationNatal
Book TitleProceedings
PublisherIEEE Computer Society
Publisher CityLos Alamitos
Tertiary TypeFull Paper
History2008-07-17 14:11:01 :: alexeimachado -> banon ::
2008-08-26 15:17:03 :: banon -> administrator ::
2009-08-13 20:37:59 :: administrator -> banon ::
2010-08-28 20:01:20 :: banon -> administrator ::
2020-02-19 03:19:23 :: administrator -> :: 2005
Content and structure area
Is the master or a copy?is the master
Content Stagecompleted
Transferable1
Content TypeExternal Contribution
KeywordsMedical imaging, image registration, factor analysis.
AbstractThis article presents a new method for discovering hidden patterns in high-dimensional dataset resulting from image registration. It is based on true factor analysis, a statistical model that aims to find clusters of correlated variables. Applied to medical imaging, factor analysis can potentially identify regions that have anatomic significance and lend insight to knowledge discovery and morphometric investigations related to pathologies. Existent factor analytic methods require the computation of the sample covariance matrix and are thus limited to low-dimensional variable spaces. The proposed algorithm is able to compute the coefficients of the model without the need of the covariance matrix, expanding its spectrum of applications. The method's efficiency and effectiveness is demonstrated in a study of volumetric variability related to the Alzheimer's disease. .
source Directory Contentthere are no files
agreement Directory Contentthere are no files
Conditions of access and use area
data URLhttp://urlib.net/rep/6qtX3pFwXQZeBBx/H3uPp
zipped data URLhttp://urlib.net/zip/6qtX3pFwXQZeBBx/H3uPp
Languageen
Target Filemachadoa_true.pdf
User Groupalexeimachado administrator
Visibilityshown
Allied materials area
Host Collectionsid.inpe.br/banon/2001/03.30.15.38
Notes area
Empty Fieldsaccessionnumber archivingpolicy archivist area callnumber copyholder copyright creatorhistory descriptionlevel dissemination documentstage doi edition electronicmailaddress group holdercode isbn issn label lineage mark mirrorrepository nextedition nexthigherunit notes numberofvolumes orcid organization pages parameterlist parentrepositories previousedition previouslowerunit progress project readergroup readpermission resumeid rightsholder secondarydate secondarykey secondarymark secondarytype serieseditor session shorttitle sponsor subject tertiarymark type url versiontype volume

Close