<?xml version="1.0" encoding="ISO-8859-1"?>
<metadatalist>
	<metadata ReferenceType="Conference Proceedings">
		<identifier>6qtX3pFwXQZeBBx/GJPfJ</identifier>
		<repository>sid.inpe.br/banon/2005/07.12.19.51</repository>
		<metadatarepository>sid.inpe.br/banon/2005/07.12.19.51.36</metadatarepository>
		<site>sibgrapi.sid.inpe.br 802</site>
		<citationkey>NeryCaPáQuMaCa:2005:DeApFe</citationkey>
		<author>Nery, Marcelo Souza,</author>
		<author>Campos, Mario Fernando Montenegro,</author>
		<author>Pádua, Flávio Luis Cardeal,</author>
		<author>Queiroz Neto, José Pinheiro de,</author>
		<author>Machado, Alexei Manso Correa,</author>
		<author>Carceroni, Rodrigo Lima,</author>
		<affiliation>Departamento de Ciência da Computação - Universidade Federal de Minas Gerais</affiliation>
		<affiliation>Pontifícia Universidade Católica de Minas Gerais</affiliation>
		<affiliation>Centro Federal de Educação Tecnológica do Amazonas</affiliation>
		<title>Determining the appropriate feature set for fish classification tasks</title>
		<conferencename>Brazilian Symposium on Computer Graphics and Image Processing, 18 (SIBGRAPI)</conferencename>
		<year>2005</year>
		<editor>Rodrigues, Maria Andréia Formico,</editor>
		<editor>Frery, Alejandro César,</editor>
		<booktitle>Proceedings</booktitle>
		<date>9-12 Oct. 2005</date>
		<publisheraddress>Los Alamitos</publisheraddress>
		<publisher>IEEE Computer Society</publisher>
		<conferencelocation>Natal</conferencelocation>
		<keywords>object classification, feature extraction, feature selection, fish classification.</keywords>
		<abstract>We present a novel fish classification methodology based on a robust feature selection technique. Unlike existing works for fish classification, which propose descriptors and do not analyze their individual impacts in the whole classification task, we propose a general set of features and their correspondent weights that should be used as a priori information by the classifier. In this sense, instead of studying techniques for improving the classifiers structure itself, we consider it as a "black box" and focus our research in the determination of which input information must bring a robust fish discrimination. All the experiments were performed with fish species of Rio Grande river in Minas Gerais, Brazil. This work has been developed as part of a wider research, which has as main goal the development of effective fish ladders for the Brazilian dams.</abstract>
		<language>en</language>
		<tertiarytype>Full Paper</tertiarytype>
		<format>On-line</format>
		<size>255 KiB</size>
		<numberoffiles>1</numberoffiles>
		<targetfile>paduaf_fishclassification.pdf</targetfile>
		<lastupdate>2005:07.13.03.00.00 sid.inpe.br/banon/2001/03.30.15.38 administrator</lastupdate>
		<metadatalastupdate>2020:02.19.03.19.13 sid.inpe.br/banon/2001/03.30.15.38 administrator {D 2005}</metadatalastupdate>
		<e-mailaddress>cardeal@dcc.ufmg.br</e-mailaddress>
		<usergroup>cardeal administrator</usergroup>
		<visibility>shown</visibility>
		<transferableflag>1</transferableflag>
		<hostcollection>sid.inpe.br/banon/2001/03.30.15.38</hostcollection>
		<contenttype>External Contribution</contenttype>
		<lasthostcollection>sid.inpe.br/banon/2001/03.30.15.38</lasthostcollection>
		<url>http://sibgrapi.sid.inpe.br/rep-/sid.inpe.br/banon/2005/07.12.19.51</url>
	</metadata>
</metadatalist>