Close
Metadata

Identity statement area
Reference TypeConference Paper (Conference Proceedings)
Sitesibgrapi.sid.inpe.br
Identifier6qtX3pFwXQZeBBx/GFSRc
Repositorysid.inpe.br/banon/2005/07.07.18.38
Last Update2005:07.12.03.00.00 (UTC) administrator
Metadatasid.inpe.br/banon/2005/07.07.18.38.42
Metadata Last Update2020:02.19.03.19.09 (UTC) administrator
Citation KeyBrevePontMasc:2005:CoMeSt
TitleCombining methods to stabilize and increase performance of neural network-based classifiers
FormatOn-line
Year2005
Access Date2021, Nov. 27
Number of Files1
Size335 KiB
Context area
Author1 Breve, Fabricio Aparecido
2 Ponti Junior, Moacir Pereira
3 Mascarenhas, Nelson Delfino d'Ávila
Affiliation1 Departamento de Computação – Universidade Federal de São Carlos, São Paulo, SP, Brasil
EditorRodrigues, Maria Andréia Formico
Frery, Alejandro César
e-Mail Addressfbreve@gmail.com
Conference NameBrazilian Symposium on Computer Graphics and Image Processing, 18 (SIBGRAPI)
Conference LocationNatal
Date9-12 Oct. 2005
PublisherIEEE Computer Society
Publisher CityLos Alamitos
Book TitleProceedings
Tertiary TypeFull Paper
History (UTC)2008-07-17 14:10:59 :: fbreve -> banon ::
2008-08-26 15:17:01 :: banon -> administrator ::
2009-08-13 20:37:45 :: administrator -> banon ::
2010-08-28 20:01:17 :: banon -> administrator ::
2020-02-19 03:19:09 :: administrator -> :: 2005
Content and structure area
Is the master or a copy?is the master
Content Stagecompleted
Transferable1
Content TypeExternal Contribution
Keywordsclassifier combining neural networks multilayer perceptron dempster-shafer decision templates bagging pattern recognition soil science tomography
AbstractIn this paper we present a set of experiments in order to recognize materials in multispectral images, which were obtained with a tomograph scanner. These images were classified by a neural network based classifier (Multilayer Perceptron) and classifier combining techniques (Bagging, Decision Templates and Dempster-Shafer) were investigated. We also present a performance comparison between the individual classifiers and the combiners. The results were evaluated by the estimated error (obtained using the Hold-Out technique) and the Kappa coefficient, and they showed performance stabilization.
doc Directory Contentaccess
source Directory Contentthere are no files
agreement Directory Contentthere are no files
Conditions of access and use area
data URLhttp://urlib.net/ibi/6qtX3pFwXQZeBBx/GFSRc
zipped data URLhttp://urlib.net/zip/6qtX3pFwXQZeBBx/GFSRc
Languageen
Target Filefbreve_combining.pdf
User Groupfbreve
administrator
Visibilityshown
Allied materials area
Host Collectionsid.inpe.br/banon/2001/03.30.15.38
Notes area
Empty Fieldsaccessionnumber archivingpolicy archivist area callnumber copyholder copyright creatorhistory descriptionlevel dissemination documentstage doi edition electronicmailaddress group holdercode isbn issn label lineage mark mirrorrepository nextedition nexthigherunit notes numberofvolumes orcid organization pages parameterlist parentrepositories previousedition previouslowerunit progress project readergroup readpermission resumeid rightsholder secondarydate secondarykey secondarymark secondarytype serieseditor session shorttitle sponsor subject tertiarymark type url versiontype volume

Close